Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Agronomic behaviour of a native grapevine cultivar from the North of Spain (Vitis vinifera L.) in a mountain viticulture area and in a coastal zone

Agronomic behaviour of a native grapevine cultivar from the North of Spain (Vitis vinifera L.) in a mountain viticulture area and in a coastal zone

Abstract

A work involving the finding, the description and the recovery of old grapevine varieties from the north and north east of Spain was begun in the CSIC in the year 1987. Among the red varieties that were found, the Verdejo Negro stood out because of its high quality. Different previous works (Martínez and Pérez 1999, 2000; Martínez et al. 2004, Santiago et al, 2003) have allowed us to know this cultivar from the ampelographic, agronomic and molecular point of view.
The aim of this study was to compare the agronomic behaviour of Verdejo Negro in two different climate areas from North Spain: one from a mountain viticulture area and other from a coastal one. In each of these areas we have an experimental plot. The first one is placed in western south of Asturias region; it is located in the slope of a mountain and has an altitude of about 506 meters with a strong slope; the geological base of the soil is formed basically by shale, sandstone and quartzite. The stocks were planted in 1991. The second plot is located in the south of Galicia region, near from the Atlantic coast, in an area without slope and with an altitude of about 35 meters. The geological bases of the soil are glandular orthogneis. The stocks were planted in 1993. In both cases the plants are grown en espalier, but pruning methodology is different and adapted to the conditions of the two areas studied. In the mountain plot pruning is made using a Guyot system and in the littoral one the Sylvoz system is used.
During four years (2002, 2005, 2006 and 2007) several agronomic parameters were measured such as the fertility rate, weight, length and width of bunches, probable alcoholic grade, must yield, pH and total acidity of the must.
The results showed that for some parameters, such as probable alcoholic grade and pH, there were no significant differences between plots, but for other parameters, as for example fertility rate, grape production per plant, must yield and total acidity, significant differences were found.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

MARTÍNEZ M.C.; GAGO P.; BOSO S.; ALONSO-VILLAVERDE V. and SANTIAGO J.L.

Misión Biológica de Galicia (CSIC), Apartado correos 28, 36080 Pontevedra, España

Contact the author

Keywords

agronomic characterization, Verdejo Negro, littoral area, mountainous area

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

The methodology to viticulture zoning developed and proposed by Gómez-Miguel and Sotés (1992) has been studied in order to validate it. This was the main aim of this work

Responses of grape yield and quality, soil physicochemical and microbial properties to different planting years

As an economically important fruit crop, continuous cropping of grapes can potentially impact soil health resulting in decreased yields.

Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Studying the effect of the addition of reduced glutathione (GSH) and/or gallotannins at bottling to limit the use of SO2 in white winemaking.

Sustainability in the winery sector: A European study

This paper investigates sustainability in European wineries. The growing body of literature on the subject of sustainability underlines the increasing attention on the environmental and social impacts of intensive and irresponsible wine production.

Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

During Champagne or sparkling wine tasting, gas-phase CO2 and volatile organic compounds invade the headspace above glasses [1], thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception [2]. Monitoring as accurately as possible the level of gas-phase CO2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO2 and a collection of various tasting parameters.