Swiss terroirs studies

Abstract

A multidisciplinary approach aiming at studying the grape-growing areas also referred as “Terroir” was initiated a few years ago in Switzerland. Collaborative studies are carried out on soil characteristics (I. Letessier, Bureau SIGALES; S. Burgos, Ecole d’Ingénieurs de Changins), climatic parameters (Swiss Federal Institute of Technology, Lausanne) and aspects of the plant physiology (Agroscope Changins-Wädenswil). The study of the soil includes the collection of geological and pedological characteristics and viticulturalist’s practical knowledge. It emerged that a large diversity in type and composition of soils was found and highlighted the importance of the parameter of soil water holding capacity (SWHC). In order to evaluate the climatic component of the “Terroir”, a model was built resulting in a climatic index taking into account temperature, radiation and wind protection. Agronomical studies revealed a good correlation between the physiology of the plant (water status, vegetative growth, sugar accumulation in berries) and the water content present in the soil (SWHC). Current studies aim at determining the influences of pedo-climatic factors on the quality of the final product in wine-growing areas in Switzerland.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Vivian ZUFFEREY, Jean-Sébastien REYNARD, Karine PYTHOUD, Cristina MONICO, François MURISIER, Isabelle LETESSIER (1)

Agroscope Changins-Wädenswil ACW, CH-1260 NYON (Suisse)
(1) Bureau SIGALES, F-38410 St Martin d’Uriage (France)

Contact the author

Keywords

terroirs, soils, climate, ecophysiology, grape quality

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Use of sensors/biosensors for detection of food safety parameters in wine

The implementation of food safety assurance systems in wineries involves ensuring that the wines produced do not pose a risk to consumer health and are therefore free from harmful substances, such as those that may be incorporated during the production process (pesticides, additives, etc.), allergens or mycotoxins.

Is wine terroir a valid concept under a changing climate?

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L.

The “green gold” @fem: assessing grapevine germplasm diversity to crossbreed the varieties of the future

Context and purpose of the study. To date over 3,000 grapevine accessions have been collected at Fondazione Edmund Mach (FEM).

Preliminary field studies of resistance of Georgian grapevine germplasm to powdery mildew (Erysiphe necator)

Erysiphe necator Schwein is a fungus that causes grapevine powdery mildew. It is one of the most problematic pathogens attacking Vitis vinifera L. The pathogen infects all green parts of the plant and reduces grape yield and quality. The suppression on mildew-susceptible cultivars requires intensive use of fungicides against pathogen, which has negative impact on the environment and human health.