Swiss terroirs studies

Abstract

A multidisciplinary approach aiming at studying the grape-growing areas also referred as “Terroir” was initiated a few years ago in Switzerland. Collaborative studies are carried out on soil characteristics (I. Letessier, Bureau SIGALES; S. Burgos, Ecole d’Ingénieurs de Changins), climatic parameters (Swiss Federal Institute of Technology, Lausanne) and aspects of the plant physiology (Agroscope Changins-Wädenswil). The study of the soil includes the collection of geological and pedological characteristics and viticulturalist’s practical knowledge. It emerged that a large diversity in type and composition of soils was found and highlighted the importance of the parameter of soil water holding capacity (SWHC). In order to evaluate the climatic component of the “Terroir”, a model was built resulting in a climatic index taking into account temperature, radiation and wind protection. Agronomical studies revealed a good correlation between the physiology of the plant (water status, vegetative growth, sugar accumulation in berries) and the water content present in the soil (SWHC). Current studies aim at determining the influences of pedo-climatic factors on the quality of the final product in wine-growing areas in Switzerland.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Vivian ZUFFEREY, Jean-Sébastien REYNARD, Karine PYTHOUD, Cristina MONICO, François MURISIER, Isabelle LETESSIER (1)

Agroscope Changins-Wädenswil ACW, CH-1260 NYON (Suisse)
(1) Bureau SIGALES, F-38410 St Martin d’Uriage (France)

Contact the author

Keywords

terroirs, soils, climate, ecophysiology, grape quality

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

The concept of terroir: what place for microbiota?

Microbes play key roles on crop nutrient availability via biogeochemical cycles, rhizosphere interactions with roots as well as on plant growth and health. Recent advances in technologies, such as High Throughput Sequencing Techniques, allowed to gain deeper insight on the structure of bacterial and fungal communities associated with soil, rhizosphere and plant phyllosphere. Over the past 10 years, numerous scientific studies have been carried out on the microbial component of the vineyard. Whether the soil or grape compartments have been taken into account, many studies agree on the evidence of regional delineations of microbial communities, that may contribute to regional wine characteristics and typicity. Some authors proposed the term “microbial terroir” including “yeast terroir” for grapes to describe the connection between microbial biogeography and regional wine characteristics. Many factors are involved in terroir including climate, soil, cultivar and human practices as well as their interactions. Studies considering “microbial terroir” greatly contributed to improve our knowledge on factors that shape the vineyard microbial structure and diversity. However, the potential impact of “microbial terroir” on wine composition has yet not received strong scientific evidence and many questions remain to be addressed, related to the functional characterization of the microbial community and its impact on plant physiology and grape composition, the origins and interannual stability of vineyard microbiota, as well as their impact on wine sensorial attributes. The presentation will give an overview on the role of microbiota as a terroir component and will highlight future perspectives and challenges on this key subject for the wine industry.

Prevention of quercetin precipitation in red wines: a promising enzymatic solution

In this video recording of the IVES science meeting 2023, Simone Vincenzi (Department of agronomy, food, natural resources, animals and environment (DAFNAE), University of Padova, Italy) speaks about the prevention of quercetin precipitation in red wines with a promising enzymatic solution. This presentation is based on an original article accessible for free on OENO One.

Reducing chemical use in vineyards. Evidence from the analysis of a national demonstration Network

High quantities of chemicals are applied in the vineyard for pest and disease control. Transition towards low pesticide viticulture is a key issue to improve sustainability. Winegrowers have to gradually change their practices to engage in this transition. This work aims at analysing the pesticide use evolution during transition towards low pesticide vineyards and identify some management options mobilized by winegrowers. To understand the diversity of pathways taken towards agroecological transition, we characterized different types of pesticide use evolution.

Terroir et marché des A.O.C

Cette communication sera basée sur les résultats d’une étude auprès des consommateurs réalisée par la société G3 pour l’I.N.A.O. sur les attitudes des consommateurs vis à vis des produits de terroir et des A.O.C. et sur un mémoire de DEA soutenu par Monsieur J-C. DURIEUX à l’Université de Paris X Nanterre, consacré aux variables explicatives du comportement d’achat des vins A.O.C.