Swiss terroirs studies

Abstract

A multidisciplinary approach aiming at studying the grape-growing areas also referred as “Terroir” was initiated a few years ago in Switzerland. Collaborative studies are carried out on soil characteristics (I. Letessier, Bureau SIGALES; S. Burgos, Ecole d’Ingénieurs de Changins), climatic parameters (Swiss Federal Institute of Technology, Lausanne) and aspects of the plant physiology (Agroscope Changins-Wädenswil). The study of the soil includes the collection of geological and pedological characteristics and viticulturalist’s practical knowledge. It emerged that a large diversity in type and composition of soils was found and highlighted the importance of the parameter of soil water holding capacity (SWHC). In order to evaluate the climatic component of the “Terroir”, a model was built resulting in a climatic index taking into account temperature, radiation and wind protection. Agronomical studies revealed a good correlation between the physiology of the plant (water status, vegetative growth, sugar accumulation in berries) and the water content present in the soil (SWHC). Current studies aim at determining the influences of pedo-climatic factors on the quality of the final product in wine-growing areas in Switzerland.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Vivian ZUFFEREY, Jean-Sébastien REYNARD, Karine PYTHOUD, Cristina MONICO, François MURISIER, Isabelle LETESSIER (1)

Agroscope Changins-Wädenswil ACW, CH-1260 NYON (Suisse)
(1) Bureau SIGALES, F-38410 St Martin d’Uriage (France)

Contact the author

Keywords

terroirs, soils, climate, ecophysiology, grape quality

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Effect of maceration conditions during the winemaking of withered Corvina grapes on wine polyphenols and anthocyanins

Amarone is an Italian red wine with worldwide recognition and high added value. In Amarone wines, grapes undergo a withering process before vinification; this leads to a modification in the concentrations of sugars, acids, and secondary metabolites.

Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Barolo DOCG is an economically important wine producing region in Northwest Italy. It is a small region of approximately 70 km2 gross area. The topography is very complex with steep sloped hills ranging in elevation from below 200 m to 550 m. Barolo DOCG wine is made exclusively from the Nebbiolo grape. Bioclimatic indexes are often used in viticulture to gain a better understanding of broader climate trends which can be compared temporally and geographically. These indexes are also used for identifying potential phenological timing, growing region suitability, and potential risks associated with expected climatic changes. Understanding how topography influences bioclimatic indexes can help with understanding of mesoscale climate behaviour leading to improved decision making and risk management strategies. The average monthly maximum and minimum temperatures, the Cool Night Index, the Huglin Index, and the monthly diurnal range (from July to October) were calculated using data from 45 weather stations within a 40 km radius of the Barolo DOCG growing area between the years 1996 and 2019. Linear and multiple regression models were developed using independent variables (elevation, aspect, slope) extracted from a digital elevation model to identify significant relationships. Bioclimatic indexes were then kriged with external drift using independent variables that showed significant relationships with the bioclimatic index using a 100 m resolution grid. The maximum monthly temperatures and the Huglin Index showed consistent significant negative relationships with elevation in all years. The minimum monthly temperatures showed no relationship with elevation but in some months a small but significant relationship was observed with aspect. Due to the lack of a relationship between minimum monthly temperatures and elevation compared to the significant relationship between maximum monthly temperatures and elevation, monthly diurnal range had a negative relationship with elevation.

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms.

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

Juvenile-to-adult vegetative phase transition in grapevine 

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge.