Swiss terroirs studies

Abstract

A multidisciplinary approach aiming at studying the grape-growing areas also referred as “Terroir” was initiated a few years ago in Switzerland. Collaborative studies are carried out on soil characteristics (I. Letessier, Bureau SIGALES; S. Burgos, Ecole d’Ingénieurs de Changins), climatic parameters (Swiss Federal Institute of Technology, Lausanne) and aspects of the plant physiology (Agroscope Changins-Wädenswil). The study of the soil includes the collection of geological and pedological characteristics and viticulturalist’s practical knowledge. It emerged that a large diversity in type and composition of soils was found and highlighted the importance of the parameter of soil water holding capacity (SWHC). In order to evaluate the climatic component of the “Terroir”, a model was built resulting in a climatic index taking into account temperature, radiation and wind protection. Agronomical studies revealed a good correlation between the physiology of the plant (water status, vegetative growth, sugar accumulation in berries) and the water content present in the soil (SWHC). Current studies aim at determining the influences of pedo-climatic factors on the quality of the final product in wine-growing areas in Switzerland.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Vivian ZUFFEREY, Jean-Sébastien REYNARD, Karine PYTHOUD, Cristina MONICO, François MURISIER, Isabelle LETESSIER (1)

Agroscope Changins-Wädenswil ACW, CH-1260 NYON (Suisse)
(1) Bureau SIGALES, F-38410 St Martin d’Uriage (France)

Contact the author

Keywords

terroirs, soils, climate, ecophysiology, grape quality

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Influence of harvest time and withering length combination on reinforced Nebbiolo wines: phenolic composition, colour traits, and sensory profile

Sforzato di Valtellina DOCG is a reinforced dry red wine produced in the mountain area of Valtellina alpine valley (North Italy), using ‘Nebbiolo’ grapes that undergo a withering process. This process impacts on the grape composition due to a sugar concentration and changes in secondary metabolism influencing volatile organic compounds (VOCs) and polyphenols.

Bilan de l’impact des pratiques viticoles sur la qualité biologique des sols

Dans le cadre de TerclimPro 2025, Laure Gontier a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8481

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

Drip irrigation and precision cooling reduce impact of extreme heat events during berry ripening

Context and purpose of the study. Heatwaves have become more frequent and intense in several winegrowing regions.

Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

The climate change is afecting particulary to the South of Spain, with high temperatures. It is important to develop new strategies in order to mantain the quality of wines