Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climatic change and terroir 9 Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate

Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate

Abstract

Precocity for fruit ripening is a genetically determined characteristic that is highly variable from one cultivar to another. In traditional wine-growing regions of Europe, growers have used this property to adapt the vines to local climatic conditions in order to maximize terroir expression. Due to global warming, the choice of later ripening grapevine varieties might be necessary in many regions to maintain late ripening conditions favourable for terroir expression. Hence, precise heat requirement data for each grapevine variety is essential information. Phenology (budburst, flowering, veraison and ripeness) and temperature data have been collected for many varieties in a wide range of locations over a great number of vintages. Heat summations base of 10°C were calculated for each variety to reach key phenological stages. However, a more sophisticated agro-climatic model might be necessary to increase the precision of a classification of varieties according to their precocity.

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

VAN LEEUWEN C. (1), GARNIER C. (2), AGUT C. (3), BACULAT B. (4), BARBEAU G. (5), BESNARD E. (6), BOIS B. (7), BOURSIQUOT J.-M. (2), CHUINE I. (8), DESSUP T. (9), DUFOURCQ T. (10), GARCIA-CORTAZAR I. (8), MARGUERIT E. (1), MONAMY C. (11), KOUNDOURAS S. (12), PAYAN J.-C. (13), PARKER A. (1), RENOUF V. (1), RODRIGUEZ-LOVELLE B. (3), ROBY J.-P. (1), TONIETTO J. (14) and TRAMBOUZE W. (15)

(1) ENITA – ISVV, 1 Cours du Général de Gaulle, CS 40201, F-33175 Gradignan-Cedex
(2) SupAgro Montpellier
(3) SGVRCDR Orange
(4) Agroclim Avignon
(5) INRA Angers
(6) Ferme expérimentale Cahors
(7) IUVV Dijon
(8) CEFE-CNRS Montpellier
(9) UMR DGPC Montpellier
(10) IFV Midi-Pyrénées
(11) BIVB Beaune
(12) University Agronomique Thessalonique
(13) IFV Nîmes
(14) Embrapa Brésil
(15) Chambre d’Agriculture Hérault

Contact the author

Keywords

Vine, cultivar, phenology, heat requirement, precocity

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Aim: In this work, we have optimized a robust methodology for investigating possible correlations between the phytochemical profile of wine and the terroir (including the climate), considering the specific wine-growing area. In particular, the untargeted metabolomic and sensorial profiles of Gutturnio DOC commercial wines (both still and “frizzante” types) from different production areas in the Piacenza province were determined. The geographical areas taken into consideration for this study consisted in Val Tidone, Val Nure and Val d’Arda.

Climatic groups in Ibero-America viticulture compared to worldwide wine producer regions

The wine production is an important activity in many Ibero-American countries. The wine producer regions of these countries configure a large use of different climate types and viticultural climates.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Géoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.

Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Aims: Forecasting the biomass allocation among source and sinks organs is crucial to better understand how grapevines control the distribution of acquired resources and has a great meaning in term of making decisions about agricultural practices in vineyards. Modelling plant growth and development is one of prediction approaches that play this role when it concerns growth rates in response to variation in environmental conditions