Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climatic change and terroir 9 Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate

Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate

Abstract

Precocity for fruit ripening is a genetically determined characteristic that is highly variable from one cultivar to another. In traditional wine-growing regions of Europe, growers have used this property to adapt the vines to local climatic conditions in order to maximize terroir expression. Due to global warming, the choice of later ripening grapevine varieties might be necessary in many regions to maintain late ripening conditions favourable for terroir expression. Hence, precise heat requirement data for each grapevine variety is essential information. Phenology (budburst, flowering, veraison and ripeness) and temperature data have been collected for many varieties in a wide range of locations over a great number of vintages. Heat summations base of 10°C were calculated for each variety to reach key phenological stages. However, a more sophisticated agro-climatic model might be necessary to increase the precision of a classification of varieties according to their precocity.

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

VAN LEEUWEN C. (1), GARNIER C. (2), AGUT C. (3), BACULAT B. (4), BARBEAU G. (5), BESNARD E. (6), BOIS B. (7), BOURSIQUOT J.-M. (2), CHUINE I. (8), DESSUP T. (9), DUFOURCQ T. (10), GARCIA-CORTAZAR I. (8), MARGUERIT E. (1), MONAMY C. (11), KOUNDOURAS S. (12), PAYAN J.-C. (13), PARKER A. (1), RENOUF V. (1), RODRIGUEZ-LOVELLE B. (3), ROBY J.-P. (1), TONIETTO J. (14) and TRAMBOUZE W. (15)

(1) ENITA – ISVV, 1 Cours du Général de Gaulle, CS 40201, F-33175 Gradignan-Cedex
(2) SupAgro Montpellier
(3) SGVRCDR Orange
(4) Agroclim Avignon
(5) INRA Angers
(6) Ferme expérimentale Cahors
(7) IUVV Dijon
(8) CEFE-CNRS Montpellier
(9) UMR DGPC Montpellier
(10) IFV Midi-Pyrénées
(11) BIVB Beaune
(12) University Agronomique Thessalonique
(13) IFV Nîmes
(14) Embrapa Brésil
(15) Chambre d’Agriculture Hérault

Contact the author

Keywords

Vine, cultivar, phenology, heat requirement, precocity

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process.

Use of fumaric acid on must or during alcoholic fermentation

Fumaric acid has been approved by the OIV in 2021 for its application on wine to control the growth and activity of lactic acid bacteria. Fumaric acid is currently being evaluated by the OIV as an acidifier of must and wine. Investigations during the 2023 vintage provided further information on its use on must or during AF, thus completing information provided during the previous vintage.

Influence of pre-fermentative steps on varietal thiol precursors

The content of 3-sulfanyl-1-hexanol and its acetate ester in wine is affected by a number of factors, including the concentration of its precursors S-3-(hexan-1-ol)-L-glutathione (G-3SH),

Know thy enemy: oxygen or storage temperature?

It is well known that high oxygen levels and high ageing temperatures are detrimental to white wine’s composition and ageing capacity. However, these results, though valuable

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.