Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climatic change and terroir 9 Observed climatic trends in South African wine regions and potential implications for viticulture

Observed climatic trends in South African wine regions and potential implications for viticulture

Abstract

Global warming is scientifically and widely accepted (IPCC). Climate change is a reality and its impacts are increasingly felt in South Africa. Using the longest data series from weather stations located in different South African wine regions and districts of South Africa, the Winkler index for viticulture can be calculated and a descriptive statistical analysis (moving averages, decade averages and linear trends) performed. This provides preliminary results with respect to climatic variation in South African vineyards over the past 40 years.
Analysis of the Winkler index showed that some regions reached the upper level of their group while others changed to warmer groups during the study period. Significant climatic trends, similar across the different wine regions of South Africa, were observed. The first signs of warming were visible in the maximum winter temperatures during the late 1960’s and 1970’s. The significant breakpoint occurs in the mid 1980’s with an increasing acceleration since 2000. This is similar to trends found in literature. These trends hold implications for potential changes in cultivar distribution, adaptation of viticultural and oenological practices and may have already contributed to the development of new wine regions in South Africa.

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

BONNARDOT Valérie (1); CAREY Victoria (2)

(1) Bureau d’Etudes et de Recherches en Climatologie Appliquée à la Viticulture, 3479 Route de Thonon, 74380 Cranves-Sales, France
(2) University of Stellenbosch, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

Climatic trends, vineyards, South Africa 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.

First results obtained with a terrain model to characterize the viticultural «terroirs» in Anjou (France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation.

Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Le zonage agroclimatique a pour objet de caractériser des lieux ayant des aptitudes distinctes pour la production de la vigne. La province de San Juan en Argentine est l’une des régions vitivinicoles les plus chaudes du pays.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors.