Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climatic change and terroir 9 Observed climatic trends in South African wine regions and potential implications for viticulture

Observed climatic trends in South African wine regions and potential implications for viticulture

Abstract

Global warming is scientifically and widely accepted (IPCC). Climate change is a reality and its impacts are increasingly felt in South Africa. Using the longest data series from weather stations located in different South African wine regions and districts of South Africa, the Winkler index for viticulture can be calculated and a descriptive statistical analysis (moving averages, decade averages and linear trends) performed. This provides preliminary results with respect to climatic variation in South African vineyards over the past 40 years.
Analysis of the Winkler index showed that some regions reached the upper level of their group while others changed to warmer groups during the study period. Significant climatic trends, similar across the different wine regions of South Africa, were observed. The first signs of warming were visible in the maximum winter temperatures during the late 1960’s and 1970’s. The significant breakpoint occurs in the mid 1980’s with an increasing acceleration since 2000. This is similar to trends found in literature. These trends hold implications for potential changes in cultivar distribution, adaptation of viticultural and oenological practices and may have already contributed to the development of new wine regions in South Africa.

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

BONNARDOT Valérie (1); CAREY Victoria (2)

(1) Bureau d’Etudes et de Recherches en Climatologie Appliquée à la Viticulture, 3479 Route de Thonon, 74380 Cranves-Sales, France
(2) University of Stellenbosch, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

Climatic trends, vineyards, South Africa 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Portable NIR spectroscopy for nutrient profiling in rootstock and scion material: enhancing decision-making in the grafting industry

The success of grafting in viticulture is deeply influenced by the nutrient composition of both rootstock and scion
materials. Key components such as nitrogen and carbohydrates play a crucial role in graft compatibility, establishment,
and overall plant vigor [1].

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Heatwaves, defined as three or more consecutive days above average historical maximum temperatures, are having a significant impact on agricultural crop yields and quality, especially in arid or semi-arid regions with reduced water availability during the growing season.

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

Oxygen consumption and changes in chemical composition of young wines

The study of the capacity to consume oxygen of the wines is an aspect of great interest since it allows to analyse their useful life.