Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climatic change and terroir 9 Observed climatic trends in South African wine regions and potential implications for viticulture

Observed climatic trends in South African wine regions and potential implications for viticulture

Abstract

Global warming is scientifically and widely accepted (IPCC). Climate change is a reality and its impacts are increasingly felt in South Africa. Using the longest data series from weather stations located in different South African wine regions and districts of South Africa, the Winkler index for viticulture can be calculated and a descriptive statistical analysis (moving averages, decade averages and linear trends) performed. This provides preliminary results with respect to climatic variation in South African vineyards over the past 40 years.
Analysis of the Winkler index showed that some regions reached the upper level of their group while others changed to warmer groups during the study period. Significant climatic trends, similar across the different wine regions of South Africa, were observed. The first signs of warming were visible in the maximum winter temperatures during the late 1960’s and 1970’s. The significant breakpoint occurs in the mid 1980’s with an increasing acceleration since 2000. This is similar to trends found in literature. These trends hold implications for potential changes in cultivar distribution, adaptation of viticultural and oenological practices and may have already contributed to the development of new wine regions in South Africa.

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

BONNARDOT Valérie (1); CAREY Victoria (2)

(1) Bureau d’Etudes et de Recherches en Climatologie Appliquée à la Viticulture, 3479 Route de Thonon, 74380 Cranves-Sales, France
(2) University of Stellenbosch, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

Climatic trends, vineyards, South Africa 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Arbuscular mycorrhizal fungi as biomarkers of vineyard yield in Champagne

The vine is colonized by a multitude of micro-organisms (fungi, bacteria, oomycetes) mainly coming from the microbial reservoir constituted by the soil. These microorganisms have positive or negative effects on the vine (protection against pathogens, resistance to abiotic stress, nutrition, but also triggering of diseases) (Fournier, Pellan et al. 2022). In addition to these functional roles, they respond quickly to environmental changes (climate, cultural practices) which could make them good bioindicators of the functioning of the wine ecosystem.

Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

In the Burgundy vineyard, frequent tractor traffic and management of inter-rows alternating grass cover and chemical weed-control lead to structural soil contrast between row and inter-row. The aim of this study was to characterize and model water flow in relation with topsoil structure modifications induced by these practices. Void ratio of the different soil volumes were determined using bulk density measurements.

Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Heatwaves, defined as three or more consecutive days above average historical maximum temperatures, are having a significant impact on agricultural crop yields and quality, especially in arid or semi-arid regions with reduced water availability during the growing season.

The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

The monitoring of the number of micro-orgranisms in wine is crucial for the wine producer. Traditional counting methods include microscopic enumeration and plating on selective media, which measures the culturability of the cells. The use of epifluorescence microscopy is, however, a method, which can measure both culturability and

Effect of stilbenes on malolactic fermentation performance of onoccocus oeni and lactiplantibacillus plantarum strains in wine production

Malolactic fermentation (MLF) is an important step in winemaking to improve wine quality through deacidification, increased microbial stability, and altered wine flavor. The phenolic composition of wine influences the growth and metabolism of lactic acid bacteria (lab) used for MLF.