Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climatic change and terroir 9 Observed climatic trends in South African wine regions and potential implications for viticulture

Observed climatic trends in South African wine regions and potential implications for viticulture

Abstract

Global warming is scientifically and widely accepted (IPCC). Climate change is a reality and its impacts are increasingly felt in South Africa. Using the longest data series from weather stations located in different South African wine regions and districts of South Africa, the Winkler index for viticulture can be calculated and a descriptive statistical analysis (moving averages, decade averages and linear trends) performed. This provides preliminary results with respect to climatic variation in South African vineyards over the past 40 years.
Analysis of the Winkler index showed that some regions reached the upper level of their group while others changed to warmer groups during the study period. Significant climatic trends, similar across the different wine regions of South Africa, were observed. The first signs of warming were visible in the maximum winter temperatures during the late 1960’s and 1970’s. The significant breakpoint occurs in the mid 1980’s with an increasing acceleration since 2000. This is similar to trends found in literature. These trends hold implications for potential changes in cultivar distribution, adaptation of viticultural and oenological practices and may have already contributed to the development of new wine regions in South Africa.

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

BONNARDOT Valérie (1); CAREY Victoria (2)

(1) Bureau d’Etudes et de Recherches en Climatologie Appliquée à la Viticulture, 3479 Route de Thonon, 74380 Cranves-Sales, France
(2) University of Stellenbosch, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

Climatic trends, vineyards, South Africa 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out.

Recommended grapevine varieties for the vineyards zone Vrsac and trend meteorological elements

The aim of this paper was to analyze trends of the meteorological elements and determine suitability of growing grapevine cultivar in viticulture region.

Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

AIM: the aim of this study was to develop a method for fine-scale temperature zoning. The effect of temperature variability on vine phenology and grape composition was assessed in the production area of Saint-Emilion

Effects of fast dehydration at low temperature and relative humidity on the phenolic composition of Nebbiolo grapes

Grape postharvest dehydration is a widely used technique for the special wines production, where genetic features, ripeness degree and environmental factors strongly influence the metabolic processes [1].

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality.