Terroir 2008 banner
IVES 9 IVES Conference Series 9 Characterization of varieties named ‘Caiño’ cultivated from Northwest of Spain

Characterization of varieties named ‘Caiño’ cultivated from Northwest of Spain

Abstract

The ‘Caiño’ cultivar was cultivated in Galicia (Northwestern Spain) before the invasion of grape phylloxera. Genetic diversity from this cultivar have been described and considered as originating in Galicia, ‘Caiño Tinto’, ‘Caiño Bravo’, ‘Caiño Redondo’, ‘Caiño Longo’ and ‘Caiño Blanco’. ‘Caiño’ was recommended as a principal cultivar for new plantations in the ‘Ribeiro’ Designation of Origin (D.O.) due to its potential for producing quality wines. Four accessions were collected from the Gemplasm Bank of Grapevines in the EVEGA (Estación de Viticultura y Enología de Galicia), Xunta de Galicia. These accessions have been studied using ampelography, ampelometry, agronomic characters. Microsatellites were selected, as recommended, to distinguish grapevine cultivars and profiles were compared with previous results. Six microsatellite primers and morphological characteristics differentiated every accession and they may therefore be considered as different cultivars. Two cultivars from the EVEGA presented genotypes that had not been reported previously: ‘Caiño Longo-EVEGA’ and ‘Caiño da Terra’

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

DÍAZ LOSADA E. (1), TATO SALGADO A. (1); CORTÉS DIÉGUEZ S. (1); RIO SEGADE S. (1); REGO MARTÍNEZ F. (1) & PEREIRA-LORENZO S. (2)

(1) Estación de Viticultura y Enología de Galicia. Ponte San Clodio s/n. 324270 Ourense, Spain
(2) Departamento de Producción Vexetal. Universidad de Santiago de Compostela. Campus de Lugo, 27002 Lugo, Spain

Contact the author

Keywords

Caíño, ampelography, ampelometry, agronomy, microsatellites

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Innovative water status monitoring of white grape varieties with on-plant sensors

Context and Purpose. Climate change presents significant challenges to agricultural sustainability, particularly through the increasing frequency of drought and water scarcity.

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

High and extreme high temperature effects on shiraz berry composition 

Climate change is leading to a rise in average temperature and in the frequency and severity of heatwaves, and is already significantly disturbing grapevine phenology and berry composition. With the evolution of the weather of Australian grape growing regions that are already warm and hot, flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted. These compounds include anthocyanins and tannins which contribute substantially to grape and wine quality. The goals of this project were to determine if berry tannin accumulation is sensitive to high temperature and to enhance knowledge on upper temperature limits for viable wine production, in turn informing critical timing for mitigation strategies.

Research on the origin and the side effects of chitosan stabilizing properties in wine

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species.

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).