Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of cover crops in a Tempranillo vineyard grown under the edaphoclimatic conditions of the Appellation of Origin Rueda

Influence of cover crops in a Tempranillo vineyard grown under the edaphoclimatic conditions of the Appellation of Origin Rueda

Abstract

The way to manage the vineyard soils has certainly changed in Spain during the last years. Traditionally, the vineyards were tilled, but this growing technique has been replaced in some vineyards by the bare soil with herbicide. Also, soil cover crops have started to be applied in some vineyards. The competition between the roots systems of the vines and the cover crop can influence on the capacity and the conditions of the plants for water absorption, transport of photosynthesized products to the roots, etc. Consequently, the cover crop can affect the water supply to the vine. The objective of this trial has been to study the behaviour of the Tempranillo variety under different alternatives of soil management, analysing the vegetative-productive vine balance and its influence on the grape quality, as well as the soil water content and the dry matter produced by the cover crop species. The trial has been carried out along 2006 and 2007 on a Tempranillo/110R vineyard, vertical trellis trained with Royat cordon pruning, with 3.00 m x 1.25 m vine spacing. The soil has homogeneus sandy-loam structure from the surface to the 110 cm depth, where there is a ground water table. The experimental treatments have been the following: TIL, traditional tillage (2006 and 2007); BAR, barley (Hordeum vulgare) (2006 and 2007); LEG, Vicia monanthos (2006) and vetch (Vicia sativa) (2007); PER, resident vegetation (2006) and or perennial vegetation, fescue (Festuca orundinacea) and ryegrass (Lolium perenne) combination at 50% (2007). The use of cover crop species in the inter-row space has provoked highly significant differences among treatments in yield, depending on the cover crop species and the annual climatic conditions. Legume and perennial species have shown to be more water competitive towards the vines than the rest of cover crops applied, which has reduced yield and vegetative development and has increased the dry matter produced by this species with respect to the others. The influence of the soil management on grape quality has not been determinant, in such a way that it has depended on the annual conditions and the level of yield, as well as on the cover crop species

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

María ALBURQUERQUE, Ramón YUSTE, Miguel A. SAN MIGUEL, Jesús YUSTE

Departamento de Viticultura. Instituto Tecnológico Agrario de Castilla y León
Ctra. Burgos km 119. 47071 Valladolid, Spain

Contact the author

Keywords

 quality, vigor, water, yield

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.

Characterization of Cabernet Sauvignon from Maipo valley (Chile) using fluorescence measurement

Viral diseases are a significant cause of both decreased grape quality and vineyard production. Important agents include grapevine leafroll-associated virus (glravs) and grapevine rupestris stem pitting-associated virus (grspav). However, conducting phytosanitary analysis of vineyards for viruses on-site is challenging, and molecular testing is generally expensive.