Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of cover crops in a Tempranillo vineyard grown under the edaphoclimatic conditions of the Appellation of Origin Rueda

Influence of cover crops in a Tempranillo vineyard grown under the edaphoclimatic conditions of the Appellation of Origin Rueda

Abstract

The way to manage the vineyard soils has certainly changed in Spain during the last years. Traditionally, the vineyards were tilled, but this growing technique has been replaced in some vineyards by the bare soil with herbicide. Also, soil cover crops have started to be applied in some vineyards. The competition between the roots systems of the vines and the cover crop can influence on the capacity and the conditions of the plants for water absorption, transport of photosynthesized products to the roots, etc. Consequently, the cover crop can affect the water supply to the vine. The objective of this trial has been to study the behaviour of the Tempranillo variety under different alternatives of soil management, analysing the vegetative-productive vine balance and its influence on the grape quality, as well as the soil water content and the dry matter produced by the cover crop species. The trial has been carried out along 2006 and 2007 on a Tempranillo/110R vineyard, vertical trellis trained with Royat cordon pruning, with 3.00 m x 1.25 m vine spacing. The soil has homogeneus sandy-loam structure from the surface to the 110 cm depth, where there is a ground water table. The experimental treatments have been the following: TIL, traditional tillage (2006 and 2007); BAR, barley (Hordeum vulgare) (2006 and 2007); LEG, Vicia monanthos (2006) and vetch (Vicia sativa) (2007); PER, resident vegetation (2006) and or perennial vegetation, fescue (Festuca orundinacea) and ryegrass (Lolium perenne) combination at 50% (2007). The use of cover crop species in the inter-row space has provoked highly significant differences among treatments in yield, depending on the cover crop species and the annual climatic conditions. Legume and perennial species have shown to be more water competitive towards the vines than the rest of cover crops applied, which has reduced yield and vegetative development and has increased the dry matter produced by this species with respect to the others. The influence of the soil management on grape quality has not been determinant, in such a way that it has depended on the annual conditions and the level of yield, as well as on the cover crop species

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

María ALBURQUERQUE, Ramón YUSTE, Miguel A. SAN MIGUEL, Jesús YUSTE

Departamento de Viticultura. Instituto Tecnológico Agrario de Castilla y León
Ctra. Burgos km 119. 47071 Valladolid, Spain

Contact the author

Keywords

 quality, vigor, water, yield

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

GrapeBreed4IPM: A horizon Europe project for sustainable viticulture through multi-actor breeding and innovation

Biodiversity loss and ecosystem degradation are among the greatest challenges of our time, and agriculture’s use of pesticides is a major driver.

Influence of planting stock and training strategy on the development and productivity of Pinot noir grapevines

For cool windy climates and/or lower vigor site situations delays in vine development during vine establishment can result in a greater number of growing seasons to achieve full yield potential. Plant material and training strategies utilized are critical factors in promoting vine development and production that is appropriate to the site conditions. The objective of this study was to evaluate nursery planting stock and training strategies for their potential to achieved advanced vine development and yield.

Meso-scale geostatistical analysis: a method for improving experimental design

The growing region of Barolo DOCG certified wines is topographically complex. The region is famous for this complexity and for the associated terroir driven Nebbiolo grapes and wines derived distinctly from this varietal. Although it is recognized that the Barolo area is unusual topographically and it is assumed that this unusual topography lends to the inherit terroir, the specifics of this relationship are less well defined.

Does spotted lanternfly phloem-feeding have downstream effects on wine volatiles? Preliminary insights into compositional shifts

The Spotted lanternfly (SLF), first detected in the U.S. in 2014, is an invasive phloem-feeding planthopper that poses a growing threat to grape and wine production in the U.S. In Pennsylvania, where it was first detected, reductions in grapevine production and fruit quality have been reported by commercial growers. Recent advances have begun to elucidate how SLF affects grapevine physiology and resource allocation, but no research has identified how SLF affects wine chemical composition and quality. Documented reductions in fruit sugar allocation due to heavy SLF phloem-feeding may have downstream effects on wine fermentation dynamics. Additionally, secondary metabolic responses stimulated by SLF may also influence berry chemical composition. The present study investigated SLF-mediated effects on wine composition through analysis of the volatile composition of wines produced from white- and red-fruited varieties of different Vitis parentage (e.g., Vitis vinifera vs. interspecific hybrids) following prolonged exposure to adult SLF phloem-feeding.

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.