Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of cover crops in a Tempranillo vineyard grown under the edaphoclimatic conditions of the Appellation of Origin Rueda

Influence of cover crops in a Tempranillo vineyard grown under the edaphoclimatic conditions of the Appellation of Origin Rueda

Abstract

The way to manage the vineyard soils has certainly changed in Spain during the last years. Traditionally, the vineyards were tilled, but this growing technique has been replaced in some vineyards by the bare soil with herbicide. Also, soil cover crops have started to be applied in some vineyards. The competition between the roots systems of the vines and the cover crop can influence on the capacity and the conditions of the plants for water absorption, transport of photosynthesized products to the roots, etc. Consequently, the cover crop can affect the water supply to the vine. The objective of this trial has been to study the behaviour of the Tempranillo variety under different alternatives of soil management, analysing the vegetative-productive vine balance and its influence on the grape quality, as well as the soil water content and the dry matter produced by the cover crop species. The trial has been carried out along 2006 and 2007 on a Tempranillo/110R vineyard, vertical trellis trained with Royat cordon pruning, with 3.00 m x 1.25 m vine spacing. The soil has homogeneus sandy-loam structure from the surface to the 110 cm depth, where there is a ground water table. The experimental treatments have been the following: TIL, traditional tillage (2006 and 2007); BAR, barley (Hordeum vulgare) (2006 and 2007); LEG, Vicia monanthos (2006) and vetch (Vicia sativa) (2007); PER, resident vegetation (2006) and or perennial vegetation, fescue (Festuca orundinacea) and ryegrass (Lolium perenne) combination at 50% (2007). The use of cover crop species in the inter-row space has provoked highly significant differences among treatments in yield, depending on the cover crop species and the annual climatic conditions. Legume and perennial species have shown to be more water competitive towards the vines than the rest of cover crops applied, which has reduced yield and vegetative development and has increased the dry matter produced by this species with respect to the others. The influence of the soil management on grape quality has not been determinant, in such a way that it has depended on the annual conditions and the level of yield, as well as on the cover crop species

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

María ALBURQUERQUE, Ramón YUSTE, Miguel A. SAN MIGUEL, Jesús YUSTE

Departamento de Viticultura. Instituto Tecnológico Agrario de Castilla y León
Ctra. Burgos km 119. 47071 Valladolid, Spain

Contact the author

Keywords

 quality, vigor, water, yield

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The current state and prospects for the development of viticulture and winemaking in Greece

Viticulture in Greece is the oldest, but in recent years there has been a reduction of areas intended for the production of wine products. The article contains data on viticulture in Greece. Over time, the land of Greek vineyards is fluctuating. There is a trend towards a decrease in areas in connection with the quota of products from the EU.

Effects of fast dehydration at low temperature and relative humidity on the phenolic composition of Nebbiolo grapes

Grape postharvest dehydration is a widely used technique for the special wines production, where genetic features, ripeness degree and environmental factors strongly influence the metabolic processes [1].

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Climate change impacts on grapevine leafroll disease and its transmission by mealybugs

Climate change impacts crop plants, plant pathogens, and their insect vectors and hence adds abiotic stress to the triangle of plant-virus-vector interactions.

Juvenile-to-adult vegetative phase transition in grapevine 

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge.