Terroir 2008 banner
IVES 9 IVES Conference Series 9 Rootstocks of prestigious Bordeaux vineyards: implications on quality and yield

Rootstocks of prestigious Bordeaux vineyards: implications on quality and yield

Abstract

Rootstocks have been used in most of the vineyards for over a century. This may seem to be a long period, but it represents only three successive plantations. Moreover, during this period of time, production objectives have changed. This study shows the implications on quality and yield of rootstocks used in prestigious red-wine producing vineyards in the Bordeaux area. It has been carried out on 400 hectares localized in five main appellations of the Bordeaux vineyard. In total, 15 different rootstocks are used. A quality index is created by weighing the destination of grapes of each plot (first wine, second wine, third wine) by the economic valuation of each wine produced in these properties. First quality is rated 4, second quality 1.5 and third quality 0.
The first results show that two rootstocks, Riparia Gloire de Montpellier (RGM) and 420A, cover 67% of the planted area. Including 3309C, 101-14 MG and SO4, 94% of the total acreage is represented. The highest quality is produced with 420A, RGM and 3309C (average quality index > 2.5). The highest yields are obtained with 161-49C, 101-14 MG, 5BB, RGM and SO4. The quality of the production with RGM and 3309C increases year after year linearly. Surprisingly, the quality of the wine produced by plots grafted on SO4 decreases after 35 years. In terms of age class, SO4 gives the best results during the period 0-30 years, 3309C for the period 30-40 years and RGM in plots of over 40 years old. Yield decreases with age, but more rapidly for some rootstocks (SO4) than for others (RGM).
Some results confirm what is already widely admitted: RGM is a high quality potential root-stock and wine quality increases with vine age. Other results are more surprising: 101-14 MG appears as the most vigourous rootstock of the list and RGM as a dryness tolerant rootstock. These last two points need to be studied on a larger scale to confirm these results.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

ROBY J.-P. (1), RENOUF V. (1,2), and VAN LEEUWEN C. (1)

(1) UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV)
Institut des Sciences de la Vigne et du Vin (ISVV)
ENITA de Bordeaux
1 Cours du Général de Gaulle
F-33175 Gradignan
(2) Laffort, BP 17, 33015 Bordeaux cedex 15, FRANCE

Contact the author

Keywords

Terroir, root-srock, quality, yield, Bordeaux

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Chemical and sensory quality, environmental sustainability, and consumer acceptance of South Tyrolean wines produced from hybrid grape varieties

Disease-resistant hybrid grape cultivars (DRHGCs) are hybrids of Vitis vinifera varieties with other Vitis species, and they are endowed with greater resistance to specific fungal diseases, enabling a potential reduction in the application of pesticides in the vineyard.

Using GIS to assess the terroir potential of an Oregon viticultural region

Deciding to grow grapes in Oregon is complex issue due to our diverse geography, climate, and relatively short history of grape growing. For any potential grape grower, vineyard site selection is the single most important decision they will face.

Mapping and tracking canopy size with VitiCanopy

Understanding vineyard variability to target management strategies, apply inputs efficiently and deliver consistent grape quality to the winery is essential. However, despite inherent vineyard variability, the majority are managed as if they are uniform. VitiCanopy is a simple, grower-friendly tool for precision/digital viticulture that allows users to collect and interpret objective spatial information about vineyard performance. After four years of field and market research, an upgraded VitiCanopy has been created to achieve a more streamlined, technology-assisted vine monitoring tool that provides users with a set of superior new features, which could significantly improve the way users monitor their grapevines. These new features include:
• New user interface
• User authentication
• Batch analysis of multiple images
• Ease the learning curve through enhanced help features
• Reporting via the creation of colour maps that will allow users to assess the spatial differences in canopies within a vineyard.
Use-case examples are presented to demonstrate the quantification and mapping of vineyard variability through objective canopy measurements, ground-truthing of remotely sensed measurements, monitoring of crop conditions, implementation of disease and water management decisions as well as creating a history of each site to forecast quality. This intelligent tool allows users to manage grapevines and make informed management choices to achieve the desired production targets and remain profitable.

Historical zoning in the world

The study of the interaction between vineyards and the environment to establish the grapevines in the appropriate places has been applied in wine science for 5000 years. Advances in the field of the zoning have not been uniform in time, and have occupied a preferential place in the contributions of Roman writers of the 1st Century AC, the contemplations of Tokay (1700) and Porto (1756) and works of the second half of the 20th century. Zoning practices today integrate multidisciplinary methodologies (viticulture, enology, soils, climatology, cartography, statistics, computer science) and require further development for future application.

The start of Croatian grapevine breeding program

Modern viticulture in Croatia and the world is mainly based on the grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries with the aim of developing resistant varieties possessing high quality level. Coratia is rich in in native grapevine varieties that are the basis of wine production, and are not included in the breeding programs of other countries.