Terroir 2008 banner
IVES 9 IVES Conference Series 9 Rootstocks of prestigious Bordeaux vineyards: implications on quality and yield

Rootstocks of prestigious Bordeaux vineyards: implications on quality and yield

Abstract

Rootstocks have been used in most of the vineyards for over a century. This may seem to be a long period, but it represents only three successive plantations. Moreover, during this period of time, production objectives have changed. This study shows the implications on quality and yield of rootstocks used in prestigious red-wine producing vineyards in the Bordeaux area. It has been carried out on 400 hectares localized in five main appellations of the Bordeaux vineyard. In total, 15 different rootstocks are used. A quality index is created by weighing the destination of grapes of each plot (first wine, second wine, third wine) by the economic valuation of each wine produced in these properties. First quality is rated 4, second quality 1.5 and third quality 0.
The first results show that two rootstocks, Riparia Gloire de Montpellier (RGM) and 420A, cover 67% of the planted area. Including 3309C, 101-14 MG and SO4, 94% of the total acreage is represented. The highest quality is produced with 420A, RGM and 3309C (average quality index > 2.5). The highest yields are obtained with 161-49C, 101-14 MG, 5BB, RGM and SO4. The quality of the production with RGM and 3309C increases year after year linearly. Surprisingly, the quality of the wine produced by plots grafted on SO4 decreases after 35 years. In terms of age class, SO4 gives the best results during the period 0-30 years, 3309C for the period 30-40 years and RGM in plots of over 40 years old. Yield decreases with age, but more rapidly for some rootstocks (SO4) than for others (RGM).
Some results confirm what is already widely admitted: RGM is a high quality potential root-stock and wine quality increases with vine age. Other results are more surprising: 101-14 MG appears as the most vigourous rootstock of the list and RGM as a dryness tolerant rootstock. These last two points need to be studied on a larger scale to confirm these results.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

ROBY J.-P. (1), RENOUF V. (1,2), and VAN LEEUWEN C. (1)

(1) UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV)
Institut des Sciences de la Vigne et du Vin (ISVV)
ENITA de Bordeaux
1 Cours du Général de Gaulle
F-33175 Gradignan
(2) Laffort, BP 17, 33015 Bordeaux cedex 15, FRANCE

Contact the author

Keywords

Terroir, root-srock, quality, yield, Bordeaux

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

«Nektar» -the new red variety wine grape aromatic high quality

The multi-annual study of the International Genetic Bank of the Grape Vine has shown that red varieties are enough, but the red varieties that produce high-quality red wine are minimal.

Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

In the concept of sustainable viticulture proposed by the OIV, it can be noted that enhancing terroir is also one measure of sustainability. Thus, the territorial approach may offer an interesting viewpoint from which to consider this issue in a multi-perspective way.

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit

Fungal communites diversity and functional roles of different types of Botrytis cinerea infected grape berries on different growing sites

Botrytis cinerea, an Ascomycota pathogen with a broad host range, infects over 1200 plant species. Grapes infected by this pathogen, which subsequently develop a noble rot, remain in the vineyard for an extended period, thus being exposed to a diverse array of physical, chemical and biological factors, which give rise to a complex microbial community.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.