Terroir 2008 banner
IVES 9 IVES Conference Series 9 Rootstocks of prestigious Bordeaux vineyards: implications on quality and yield

Rootstocks of prestigious Bordeaux vineyards: implications on quality and yield

Abstract

Rootstocks have been used in most of the vineyards for over a century. This may seem to be a long period, but it represents only three successive plantations. Moreover, during this period of time, production objectives have changed. This study shows the implications on quality and yield of rootstocks used in prestigious red-wine producing vineyards in the Bordeaux area. It has been carried out on 400 hectares localized in five main appellations of the Bordeaux vineyard. In total, 15 different rootstocks are used. A quality index is created by weighing the destination of grapes of each plot (first wine, second wine, third wine) by the economic valuation of each wine produced in these properties. First quality is rated 4, second quality 1.5 and third quality 0.
The first results show that two rootstocks, Riparia Gloire de Montpellier (RGM) and 420A, cover 67% of the planted area. Including 3309C, 101-14 MG and SO4, 94% of the total acreage is represented. The highest quality is produced with 420A, RGM and 3309C (average quality index > 2.5). The highest yields are obtained with 161-49C, 101-14 MG, 5BB, RGM and SO4. The quality of the production with RGM and 3309C increases year after year linearly. Surprisingly, the quality of the wine produced by plots grafted on SO4 decreases after 35 years. In terms of age class, SO4 gives the best results during the period 0-30 years, 3309C for the period 30-40 years and RGM in plots of over 40 years old. Yield decreases with age, but more rapidly for some rootstocks (SO4) than for others (RGM).
Some results confirm what is already widely admitted: RGM is a high quality potential root-stock and wine quality increases with vine age. Other results are more surprising: 101-14 MG appears as the most vigourous rootstock of the list and RGM as a dryness tolerant rootstock. These last two points need to be studied on a larger scale to confirm these results.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

ROBY J.-P. (1), RENOUF V. (1,2), and VAN LEEUWEN C. (1)

(1) UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV)
Institut des Sciences de la Vigne et du Vin (ISVV)
ENITA de Bordeaux
1 Cours du Général de Gaulle
F-33175 Gradignan
(2) Laffort, BP 17, 33015 Bordeaux cedex 15, FRANCE

Contact the author

Keywords

Terroir, root-srock, quality, yield, Bordeaux

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

Isolated Antarctic soil yeasts with fermentative capacity with potential use in the wine industry

The wine industry is currently on the search for new aromas and less browning in their products. In the improvement process of wine, lower fermentation temperatures have been considered, however, the yeasts in the market cannot tolerate such temperatures

Definition and planning of viticultural landscapes case study in the “Côtes du Rhône Gardoises”

Les préoccupations actuelles autour des paysages viticoles vont au-delà des clichés promotionnels développés par les stratégies marketing. En effet, les paysages sont aujourd’hui au cœur d’une demande sociale croissante qui se traduit par différentes lois (la loi paysage de 1993, le paysage reconnu comme patrimoine commun de la nation par la loi n°95-101, la création du Conseil national du paysage par arrêté du 8/12/2000).