Terroir 2008 banner
IVES 9 IVES Conference Series 9 Rootstocks of prestigious Bordeaux vineyards: implications on quality and yield

Rootstocks of prestigious Bordeaux vineyards: implications on quality and yield

Abstract

Rootstocks have been used in most of the vineyards for over a century. This may seem to be a long period, but it represents only three successive plantations. Moreover, during this period of time, production objectives have changed. This study shows the implications on quality and yield of rootstocks used in prestigious red-wine producing vineyards in the Bordeaux area. It has been carried out on 400 hectares localized in five main appellations of the Bordeaux vineyard. In total, 15 different rootstocks are used. A quality index is created by weighing the destination of grapes of each plot (first wine, second wine, third wine) by the economic valuation of each wine produced in these properties. First quality is rated 4, second quality 1.5 and third quality 0.
The first results show that two rootstocks, Riparia Gloire de Montpellier (RGM) and 420A, cover 67% of the planted area. Including 3309C, 101-14 MG and SO4, 94% of the total acreage is represented. The highest quality is produced with 420A, RGM and 3309C (average quality index > 2.5). The highest yields are obtained with 161-49C, 101-14 MG, 5BB, RGM and SO4. The quality of the production with RGM and 3309C increases year after year linearly. Surprisingly, the quality of the wine produced by plots grafted on SO4 decreases after 35 years. In terms of age class, SO4 gives the best results during the period 0-30 years, 3309C for the period 30-40 years and RGM in plots of over 40 years old. Yield decreases with age, but more rapidly for some rootstocks (SO4) than for others (RGM).
Some results confirm what is already widely admitted: RGM is a high quality potential root-stock and wine quality increases with vine age. Other results are more surprising: 101-14 MG appears as the most vigourous rootstock of the list and RGM as a dryness tolerant rootstock. These last two points need to be studied on a larger scale to confirm these results.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

ROBY J.-P. (1), RENOUF V. (1,2), and VAN LEEUWEN C. (1)

(1) UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV)
Institut des Sciences de la Vigne et du Vin (ISVV)
ENITA de Bordeaux
1 Cours du Général de Gaulle
F-33175 Gradignan
(2) Laffort, BP 17, 33015 Bordeaux cedex 15, FRANCE

Contact the author

Keywords

Terroir, root-srock, quality, yield, Bordeaux

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Ochratoxin A (OTA) is a mycotoxin produced by several filamentous fungi infecting grape bunches (Penicillium and Aspergillus spp.), this toxin pass to must when grapes are crushed and later it is found in wine. Following the evaluations of the toxicity of OTA, European Commission Regulations have been promulgated introducing upper limits for OTA concentrations in various commodities (cereals, cereal products, dried vine fruit, coffee, wine, grape juice, baby foods and dietary foods for special medical purposes).

Foliar application of specific inactivated yeast to enhance the varietal aroma precursors accumulation on cv. Traminer

The production of grapes with a balanced composition is one of the main goals that agronomists and oenologists pursue to produce premium quality wines.

Caractérisation des terroirs viticoles champenois

The Champagne vineyard extends over 35,300 ha under the Appellation d’Origine Contrôlée, of which 30,000 are in production. It mainly covers 3 departments: in order of importance, Marne (68% of the appellation area), Aube (22%) and Aisne (10%), and more anecdotally Haute Marne and Seine and Mame. It is a young vineyard (for more than half of the surface, the winegrowers have the experience of only one generation of vines), and fragmented (more than half of the exploitations extend over less than 1 ha; the average size of a cadastral parcel is 12 ares).

Application of high-throughput sequencing tools for characterisation of microbial communities during alcoholic fermentation

Developments in high-throughput sequencing (HTS) technologies allow us to obtain large amounts of microbial information from wine and must samples. Thus approaches, that are aimed at characterising the microbial diversity during fermentation, can be enhanced, or possibly even replaced, with HTS-based metabarcoding. To reduce experimental biases and increase data reproducibility, we compared 3 DNA extraction methods by evaluating differences in the fungal diversity with Riesling alcoholic fermentation samples at four different vineyards. The fungal diversity profiling was done using the genetic markers ITS2 and D2 using metabarcoding. The extraction methods compared consisted of a commercial kit, a recently published protocol that includes a DNA enhancer, and a protocol based on a buffer containing common inhibitor removal reagents. All methods were able to distinguish vineyard effects on the fungal diversity, but the results differed quantitatively.

Study on the impact of clone on the varietal aroma of Xinomavro

It is well documented that varietal aroma is an important parameter of wine quality. Chemical compounds responsible for wine varietal aroma are sourced from secondary grape metabolites. Until today little research is conducted on the influence of vine clone on the grape aromatic content of Greek grape varieties. Xinomavro (Vitis vinifera L.) is one of the most important Greek grape varieties, valuable for the wine industry of Northern Greece since it contributes to the production of PDO wine of Naoussa, Amindeo and Goumenissa.