Terroir 2008 banner
IVES 9 IVES Conference Series 9 Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

Abstract

A two years trial was carried out in Chianti (Central Italy) to assess at the detailed scale the viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions, by means of the ΔC13 measured in the must sugars. Six plots placed in two specialised vineyards in similar geomorphological conditions were investigated. The plots differed for morphological position: summit, backslope and footslope. The soils of the vineyards were similar, except for structure, porosity and related hydropedological characteristics. Soil water content and temperature were measured at different depths. Measurements were replicated every one/two weeks. Soil characterization included macroporosity quantification by image analysis.
The yield, phenological phases, and chemical analysis of grapes were determined. The isotopic ratio 13C/12C was measured in the must sugar upon harvesting. Grapes of each plot were collected for wine making in small barrels. The wines obtained were analysed and submitted to a blind organoleptic testing.
The results demonstrated that almost all plots had rather high amounts of transpirable water, even during the driest time of the year; however, the response of Sangiovese was influenced by site hydropedology. The soils in morphological positions receiving and holding more water produced significant worst results in the moister 2005, than during the drier 2006. The drier soils yielded the best results in both years, but more prominently in 2005. Vines of the plots having a lower soil water availability produced relatively higher values of ΔC13, as well as a better oenological and organoleptic result. The ΔC13 test confirmed the limited stress conditions in the two vineyards, despite yields in the two years ranged from 2 to 8 kg per plant. This result highlighted the pedoclimatic limitations of the studied sites in obtaining high quality wine.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Edoardo A.C. COSTANTINI (1), Sergio PELLEGRINI (1), Pierluigi BUCELLI (1), Paolo STORCHI (2), Nadia VIGNOZZI (1), Roberto BARBETTI (1), Stefano CAMPAGNOLO (1)

(1) CRA – Research centre for Agrobiology and Pedology, Florence, Italy
(2) CRA – Research unit for Viticulture, Arezzo, Italy

Contact the author

Keywords

carbon isotopes, hydropedology, porosity, land evaluation, terroir

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Using the fraction of transpirable soil water to estimate grapevine leaf water potential: comparing the classical statistical regression approach to machine learning algorithms

Weather uncertainty is forcing Mediterranean winegrowers to adopt new irrigation strategies to cope with water scarcity while ensuring a sustainable yield and improved berry and wine quality standards. Therefore, more accurate and high-resolution monitoring of soil water content and vine water status is a major concern. Leaf water potential measured at pre-dawn (PD) is considered to be in equilibrium with soil water potential and is highly correlated with soil water content at the soil depth where roots extract water.

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and

Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs.

Correlation between grape and wine quality, landscape diversity, on-field biodiversity, in doc gioia del colle, italy

Analysis of aerial photos by using GIS tools and on-field surveys of flora are used to characterize territories from an agro-ecological point of view and to assess the level of diversity of given agro-ecosystems. More and more correlations between landscape characteristics, sustainability and quality of agriculture production were speculated. In last three years a study was carried out in the area of DOC “Gioia del Colle” in Apulia, South Italy, in order to characterize and investigate different vineyards and sites and find out possible interactions and correlations between the landscape diversity, the biodiversity of fields and the quality of grapes and wines.

Seasonal dynamics of water and sugar compartmentalization in grape clusters under deficit irrigation

Water stress triggers functional compartmentalization in grapevines, influencing how resources are allocated to different plant organs.