Terroir 2008 banner
IVES 9 IVES Conference Series 9 Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

Abstract

A two years trial was carried out in Chianti (Central Italy) to assess at the detailed scale the viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions, by means of the ΔC13 measured in the must sugars. Six plots placed in two specialised vineyards in similar geomorphological conditions were investigated. The plots differed for morphological position: summit, backslope and footslope. The soils of the vineyards were similar, except for structure, porosity and related hydropedological characteristics. Soil water content and temperature were measured at different depths. Measurements were replicated every one/two weeks. Soil characterization included macroporosity quantification by image analysis.
The yield, phenological phases, and chemical analysis of grapes were determined. The isotopic ratio 13C/12C was measured in the must sugar upon harvesting. Grapes of each plot were collected for wine making in small barrels. The wines obtained were analysed and submitted to a blind organoleptic testing.
The results demonstrated that almost all plots had rather high amounts of transpirable water, even during the driest time of the year; however, the response of Sangiovese was influenced by site hydropedology. The soils in morphological positions receiving and holding more water produced significant worst results in the moister 2005, than during the drier 2006. The drier soils yielded the best results in both years, but more prominently in 2005. Vines of the plots having a lower soil water availability produced relatively higher values of ΔC13, as well as a better oenological and organoleptic result. The ΔC13 test confirmed the limited stress conditions in the two vineyards, despite yields in the two years ranged from 2 to 8 kg per plant. This result highlighted the pedoclimatic limitations of the studied sites in obtaining high quality wine.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Edoardo A.C. COSTANTINI (1), Sergio PELLEGRINI (1), Pierluigi BUCELLI (1), Paolo STORCHI (2), Nadia VIGNOZZI (1), Roberto BARBETTI (1), Stefano CAMPAGNOLO (1)

(1) CRA – Research centre for Agrobiology and Pedology, Florence, Italy
(2) CRA – Research unit for Viticulture, Arezzo, Italy

Contact the author

Keywords

carbon isotopes, hydropedology, porosity, land evaluation, terroir

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Relationships between vine isohydricity and changes of fruit growth and metabolism during water deficit

The frequency of water deficits is increasing in many grape-growing regions due to climate change.

Revisión de estudios sobre suelos vitícolas de las tierras del Jerez

Dada la importancia de los suelos y de los substratos geológicos en la zonificación vitivinícola, los autores realizan una revisión de estudios sobre las formaciones más importantes en la D.O. Jerez-Xérès-Sherry y Manzanilla-Sanlúcar de Barrameda.

Characterization of different clone candidates of xinomavro according to their phenolic composition

Context and purpose of the study ‐ The aim of this study is the examination of wines of 9 different clones of a Greek grape variety Xinomavro, (ΧE1, X19, X22, X28, ΧE2 X30, X31, X35, X36, X37), with regards to their phenolic and anthocyanin content and chemical composition.

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Wine aroma is a complex gaseous mixture composed of various compounds; some of these molecules derive directly from the grapes while most of them are released and synthetized during fermentation or are due to ageing reactions

Circular viticulture: transforming grapevine waste into sustainable fibers

Annually, around 31.95 million tonnes of grapevine prunings are produced worldwide as agricultural waste.