Terroir 2008 banner
IVES 9 IVES Conference Series 9 Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

Abstract

A two years trial was carried out in Chianti (Central Italy) to assess at the detailed scale the viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions, by means of the ΔC13 measured in the must sugars. Six plots placed in two specialised vineyards in similar geomorphological conditions were investigated. The plots differed for morphological position: summit, backslope and footslope. The soils of the vineyards were similar, except for structure, porosity and related hydropedological characteristics. Soil water content and temperature were measured at different depths. Measurements were replicated every one/two weeks. Soil characterization included macroporosity quantification by image analysis.
The yield, phenological phases, and chemical analysis of grapes were determined. The isotopic ratio 13C/12C was measured in the must sugar upon harvesting. Grapes of each plot were collected for wine making in small barrels. The wines obtained were analysed and submitted to a blind organoleptic testing.
The results demonstrated that almost all plots had rather high amounts of transpirable water, even during the driest time of the year; however, the response of Sangiovese was influenced by site hydropedology. The soils in morphological positions receiving and holding more water produced significant worst results in the moister 2005, than during the drier 2006. The drier soils yielded the best results in both years, but more prominently in 2005. Vines of the plots having a lower soil water availability produced relatively higher values of ΔC13, as well as a better oenological and organoleptic result. The ΔC13 test confirmed the limited stress conditions in the two vineyards, despite yields in the two years ranged from 2 to 8 kg per plant. This result highlighted the pedoclimatic limitations of the studied sites in obtaining high quality wine.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Edoardo A.C. COSTANTINI (1), Sergio PELLEGRINI (1), Pierluigi BUCELLI (1), Paolo STORCHI (2), Nadia VIGNOZZI (1), Roberto BARBETTI (1), Stefano CAMPAGNOLO (1)

(1) CRA – Research centre for Agrobiology and Pedology, Florence, Italy
(2) CRA – Research unit for Viticulture, Arezzo, Italy

Contact the author

Keywords

carbon isotopes, hydropedology, porosity, land evaluation, terroir

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall

Classification and prediction of tannin botanical origin through voltammetry and machine learning approach

The classification of enological tannins has gained importance following the OIV’s requirement to include their botanical origin on product labels (OIV-OENO624-2022).

The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition

Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water use efficiency (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil derived signals to above-ground plant organs to induce a

Sensory profiles of Shiraz wine from six Barossa sub-regions: a comparison between industry scale and standardised small lot research wine making

Aims: The Barossa wine region in South Australia comprises six sub-regions and is renowned for its Shiraz wines. However, there is no comprehensive documentation of the distinctive sensory characteristics of wines from these sub-regions.