Terroir 2008 banner
IVES 9 IVES Conference Series 9 Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

Abstract

A two years trial was carried out in Chianti (Central Italy) to assess at the detailed scale the viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions, by means of the ΔC13 measured in the must sugars. Six plots placed in two specialised vineyards in similar geomorphological conditions were investigated. The plots differed for morphological position: summit, backslope and footslope. The soils of the vineyards were similar, except for structure, porosity and related hydropedological characteristics. Soil water content and temperature were measured at different depths. Measurements were replicated every one/two weeks. Soil characterization included macroporosity quantification by image analysis.
The yield, phenological phases, and chemical analysis of grapes were determined. The isotopic ratio 13C/12C was measured in the must sugar upon harvesting. Grapes of each plot were collected for wine making in small barrels. The wines obtained were analysed and submitted to a blind organoleptic testing.
The results demonstrated that almost all plots had rather high amounts of transpirable water, even during the driest time of the year; however, the response of Sangiovese was influenced by site hydropedology. The soils in morphological positions receiving and holding more water produced significant worst results in the moister 2005, than during the drier 2006. The drier soils yielded the best results in both years, but more prominently in 2005. Vines of the plots having a lower soil water availability produced relatively higher values of ΔC13, as well as a better oenological and organoleptic result. The ΔC13 test confirmed the limited stress conditions in the two vineyards, despite yields in the two years ranged from 2 to 8 kg per plant. This result highlighted the pedoclimatic limitations of the studied sites in obtaining high quality wine.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Edoardo A.C. COSTANTINI (1), Sergio PELLEGRINI (1), Pierluigi BUCELLI (1), Paolo STORCHI (2), Nadia VIGNOZZI (1), Roberto BARBETTI (1), Stefano CAMPAGNOLO (1)

(1) CRA – Research centre for Agrobiology and Pedology, Florence, Italy
(2) CRA – Research unit for Viticulture, Arezzo, Italy

Contact the author

Keywords

carbon isotopes, hydropedology, porosity, land evaluation, terroir

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Biodiversidad de levaduras no-Saccharomyces aisladas de viñedos uruguayos: Lachancea thermotolerans y su potencial en la industria de bebidas fermentadas

Non-saccharomyces yeasts play a crucial role in fermentation, producing a variety of secondary metabolites and enzymes that contribute to aromatic and sensory complexity compared to saccharomyces yeasts. It is crucial to understand and control the dynamics of non-saccharomyces yeasts to produce distinctive and high-quality fermented beverages.

Zonazione aziendale nel territorio del Chianti classico e valorizzazione dei vini

Nell’ambiente del Chianti Classico è stato applicato un progetto di zonazione aziendale con l’objettivo di valorizzare le produzioni dei diversi vigneti. In particolare sono stati individuati sette siti, sottoposti a studio particolareggiato per un triennio.

Chemical and sensory evaluation of Bordeaux wines (Cabernet sauvignon and Merlot) and correlation with wine age

This study was carried out on 24 vintages of Cabernet sauvignon and on 7 vintages of Merlot produced by two different Bordeaux growing areas. Proanthocyanidin monomers and oligomers, and several parameters of the proanthocyanidin fraction were analytically assessed.

Conversion to mechanical management in vineyards maintains fruit

Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.