Terroir 2008 banner
IVES 9 IVES Conference Series 9 Contribution of Electrical Resistivity Tomography (ERT) measurements for characterizing hydrological behaviour of an experimental plot in relation to pedo-geological factors (AOC Gaillac, SW France)

Contribution of Electrical Resistivity Tomography (ERT) measurements for characterizing hydrological behaviour of an experimental plot in relation to pedo-geological factors (AOC Gaillac, SW France)

Abstract

Electrical Resistivity Tomography (ERT) measurements have been performed by the Wenner method on an experimental plot situated in Gaillac region. They have been carried out during two highly contrasted hydric periods: (i) dry (spring 2006), (ii) humid (spring 2007) with soils close to field capacity. Results are compared to evaluate the hydrological behavior of the plot in relation with its main pedo-geological characteristics. The three reiterated transects (North-Median-South) give a general view of the plot configuration in agreement with the pedo-geologic observation trenches data. All the resistivity profiles show the superposition of two highly contrasted sequences. The first sequence, at the bottom, is a very low resistivity values sequence (up to 40 Ω.m) which coincides with the argillaceous-dominated molassic bed-rock. The second is a high to very high resistivity values sequence (from 300 Ω.m to more than 1500 Ω.m at the very top) which coincides with a silty-sandy and gravels soil complex of about 2 m thick. Resistivity of the molassic clayed-dominated geological basement does not depend on climatic conditions and stays at a very low value independently of dry or humid periods. Resistivity values of the silty-sandy/gravels horizons vary with a factor 2, from 300 to 750 Ω.m in humid conditions and from 750 Ω.m to 1500 Ω.m under dry conditions. Furthermore, the invariant location in the resistivity profiles of the two sequences, implies that the water runoff at the molassic bed rock/gravels interface is short-lived and most probably of low amplitude.
The hydric behavior of the experimental plot evidences a high risk of drought stress during summer. The choice of a rootstock with a hemi-plunging habit (Gravesac) will allow roots to attain the moisture at the molasse/gravels boundary and protect them from excess of drought.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Pierre COURJAULT-RADÉ (1), José DARROZES (1), Muriel LLUBES (2), Eric MAIRE (1), Marguerite MUNOZ (1) and Nicolas HIRISSOU (3)

(1) Laboratoire des Mécanismes de Transfert en Géologie (LMTG) – Université de Toulouse – UMR 5563 – CNRS – 14, Avenue E. Belin 31400 Toulouse (France)
(2) Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS)- Université de Toulouse – 14, Avenue E. Belin 31400 Toulouse (France)
(3) Domaine du Moulin, Chemin de Bastié, 81600 Gaillac (France)

Contact the author

Keywords

AOC Gaillac, Fonctionnement hydrique, Pédo-géologie, Résistivité, Sud-Ouest France

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Differentiating and grouping of oltrepo’ pavese environments according to grape maturation

The maturation patterns process has been very studied. In particular the modelization of the sugars and titratable acidity during the ripening period was an important approach, in particular for the prediction of harvest date (Barillere et al., 1988; Jourion et al.,1987; Maujean et al., 1983; Scienza, 1989). In Oltrepò Pavese, the widest viticultural district of Lombardy – Northern Italy – (about 15000 hectares), grape maturation trends shows high variability, due to the large variation in environmental characteristics of vineyards (altitude, exposure, soil type, mesoclimate) and to “cultivar x environment” interaction.

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

Effect of maceration conditions during the winemaking of withered Corvina grapes on wine polyphenols and anthocyanins

Amarone is an Italian red wine with worldwide recognition and high added value. In Amarone wines, grapes undergo a withering process before vinification; this leads to a modification in the concentrations of sugars, acids, and secondary metabolites.

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030.