Terroir 2008 banner
IVES 9 IVES Conference Series 9 Interest in measuring the grape texture to characterise grapes from different cultivation areas – Example of Cabernet franc from the Loire Valley

Interest in measuring the grape texture to characterise grapes from different cultivation areas – Example of Cabernet franc from the Loire Valley

Abstract

A two-bite compression test was applied on Cabernet franc grapes during two harvest seasons. The evolution of the texture parameters from véraison to harvest was studied and a new mechanical ripeness notion was introduced. The ripeness stage and the parcel type effects on the texture properties were investigated, considering ten sampling dates and three parcels. A sensory description of the same grape samples was also performed. The compression test and the sensory evaluation allowed discrimination between ripeness levels and parcels types. The influence of the parcel type and the harvest season were highlighted. Indeed each parcel behaved differently from the others toward climatic conditions. High correlations were observed between some sensory descriptors and texture indices in 2005. This work confirmed the interest of the grape texture as an indicator of the grape ripeness in relation with the terroir.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

LE MOIGNE Marine, MAURY Chantal, LETAIEF Hend, SIRET René, JOURJON Frédérique

Ecole Supérieure d’Agriculture d’Angers, Laboratoire GRAPPE, UMT VINITERA, 55 Rue Rabelais, BP 30748, 49007 Angers Cedex 01, France

Contact the author

Keywords

Grape, texture, sensory, parcel, ripeness 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Melatonin priming retards fungal decay in postharvest table grapes 

Postharvest losses of fruits may reach in some cases 40% in developed countries. This food waste has a significant carbon footprint and makes a major contribution toward greenhouse gas emissions so sustainable postharvest strategies are being investigated.
Melatonin, a well-known mammalian neurohormone, has been investigated as a priming agent to slow down fungal decay progression in postharvest climacteric and some non-climacteric fruits. However, the molecular and metabolic mechanisms responsible for such enhancement of disease tolerance are largely unknown.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.