Terroir 2008 banner
IVES 9 IVES Conference Series 9 Interest in measuring the grape texture to characterise grapes from different cultivation areas – Example of Cabernet franc from the Loire Valley

Interest in measuring the grape texture to characterise grapes from different cultivation areas – Example of Cabernet franc from the Loire Valley

Abstract

A two-bite compression test was applied on Cabernet franc grapes during two harvest seasons. The evolution of the texture parameters from véraison to harvest was studied and a new mechanical ripeness notion was introduced. The ripeness stage and the parcel type effects on the texture properties were investigated, considering ten sampling dates and three parcels. A sensory description of the same grape samples was also performed. The compression test and the sensory evaluation allowed discrimination between ripeness levels and parcels types. The influence of the parcel type and the harvest season were highlighted. Indeed each parcel behaved differently from the others toward climatic conditions. High correlations were observed between some sensory descriptors and texture indices in 2005. This work confirmed the interest of the grape texture as an indicator of the grape ripeness in relation with the terroir.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

LE MOIGNE Marine, MAURY Chantal, LETAIEF Hend, SIRET René, JOURJON Frédérique

Ecole Supérieure d’Agriculture d’Angers, Laboratoire GRAPPE, UMT VINITERA, 55 Rue Rabelais, BP 30748, 49007 Angers Cedex 01, France

Contact the author

Keywords

Grape, texture, sensory, parcel, ripeness 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Delayed irrigation nearly doubles yield loss compared to anthocyanin gain in Southern Oregon Pinot noir

Irrigation initiation timing is a critical annual management decision that has cascading effects on grapevine productivity and wine quality.

First results obtained with a terrain model to characterize the viticultural «terroirs» in Anjou (France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

Phylloxera root infection drives vineyard water

Most of the rootstocks used in viticulture today are partly resistant against grape phylloxera (Daktulosphaira vitifoliae Fitch) and host phylloxera on the root system without conspicuous negative impacts on fruit production).

Frost risk projections in a changing climate are highly sensitive in time and space to frost modelling approaches

Late spring frost is a major challenge for various winegrowing regions across the world, its occurrence often leading to important yield losses and/or plant failure. Despite a significant increase in minimum temperatures worldwide, the spatial and temporal evolution of spring frost risk under a warmer climate remains largely uncertain. Recent projections of spring frost risk for viticulture in Europe throughout the 21st century show that its evolution strongly depends on the model approach used to simulate budburst. Furthermore, the frost damage modelling methods used in these projections are usually not assessed through comparison to field observations and/or frost damage reports.
The present study aims at comparing frost risk projections simulated using six spring frost models based on two approaches: a) models considering a fixed damage threshold after the predicted budburst date (e.g BRIN, Smoothed-Utah, Growing Degree Days, Fenovitis) and b) models considering a dynamic frost sensitivity threshold based on the predicted grapevine winter/spring dehardening process (e.g. Ferguson model). The capability of each model to simulate an actual frost event for the Vitis vinifera cv. Chadonnay B was previously assessed by comparing simulated cold thermal stress to reports of events with frost damage in Chablis, the northernmost winegrowing region of Burgundy. Models exhibited scores of κ > 0.65 when reproducing the frost/non-frost damage years and an accuracy ranging from 0.82 to 0.90.
Spring frost risk projections throughout the 21st century were performed for all winegrowing subregions of Bourgogne-Franche-Comté under two CMIP5 concentration pathways (4.5 and 8.5) using statistically downscaled 8×8 km daily air temperature and humidity of 13 climate models. Contrasting results with region-specific spring frost risk trends were observed. Three out of five models show a decrease in the frequency of frost years across the whole study area while the other two show an increase that is more or less pronounced depending on winegrowing subregion. Our findings indicate that the lack of accuracy in grapevine budburst and dehardening models makes climate projections of spring frost risk highly uncertain for grapevine cultivation regions.