Terroir 2008 banner
IVES 9 IVES Conference Series 9 Interest in measuring the grape texture to characterise grapes from different cultivation areas – Example of Cabernet franc from the Loire Valley

Interest in measuring the grape texture to characterise grapes from different cultivation areas – Example of Cabernet franc from the Loire Valley

Abstract

A two-bite compression test was applied on Cabernet franc grapes during two harvest seasons. The evolution of the texture parameters from véraison to harvest was studied and a new mechanical ripeness notion was introduced. The ripeness stage and the parcel type effects on the texture properties were investigated, considering ten sampling dates and three parcels. A sensory description of the same grape samples was also performed. The compression test and the sensory evaluation allowed discrimination between ripeness levels and parcels types. The influence of the parcel type and the harvest season were highlighted. Indeed each parcel behaved differently from the others toward climatic conditions. High correlations were observed between some sensory descriptors and texture indices in 2005. This work confirmed the interest of the grape texture as an indicator of the grape ripeness in relation with the terroir.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

LE MOIGNE Marine, MAURY Chantal, LETAIEF Hend, SIRET René, JOURJON Frédérique

Ecole Supérieure d’Agriculture d’Angers, Laboratoire GRAPPE, UMT VINITERA, 55 Rue Rabelais, BP 30748, 49007 Angers Cedex 01, France

Contact the author

Keywords

Grape, texture, sensory, parcel, ripeness 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Metschnikowia pulcherrima as biocontrol agent in white winemaking

Biocontrol using non-Saccharomyces yeasts is an alternative strategy to chemical additives to prevent the growth of spoilage microorganisms.

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples.

Kinetic investigations of the sulfite addition on flavanols

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2].

Exploring the influence of grapevine rootstock on yield components 

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry. In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.