Terroir 2008 banner
IVES 9 IVES Conference Series 9 Study of the sensory dimension of the wine typicality related to a terroir and crossing with their viticultural and oenological characteristics

Study of the sensory dimension of the wine typicality related to a terroir and crossing with their viticultural and oenological characteristics

Abstract

The typicality of a product can be characterized by properties of similarity in relation to a type, but also by the properties of distinction. The typicality related to the soil is associated with a delimited geographical origin, and with asserted characteristics. The aim of this study is to determine the sensory profile of typical wines and to interrelate with their technical characteristics. A quantitative descriptive analysis was carried out by an expert panel on 34 wines from Vintage 2005 (23 “Anjou-Villages Brissac” and 11 “outsiders”). All these wines came from plots being able to product the A.O.C. “Anjou-Villages Brissac”. In addition, a characterization of the typicality of the products was carried out with “just about right” profiles, by a group of professionals of this area, from descriptors raised by discussion with all the producers of the area. Finally, a crossing of the sensory data with viticultural and enological practices was carried out.
The results showed the relevance of the expert panel in the discrimination of the products. Two groups could be distinguished, one consisted essentially of wines “Anjou-Villages Brissac” and the other consisted essentially of wines “outsiders”. The panel of professionals proved to be relevant on the characterization of the total quality of the wines, but did not appear consensual for more precise descriptors. The crossing of sensory profiles with some technical acts showed significant effects of “thinning out of leaves”, “disbudding”, “maceration” and “fermentation with industrial yeast” on sensory characteristics.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Yves CADOT (1), Alain SAMSON (2), Soline CAILLE (3), Marie SCHOLTUS (1), Cécile COULON (4), René MORLAT (1)

(1) INRA, UE1117 Vigne et Vin, F-49070 Beaucouzé, France
(2) INRA, UE999 Pech-Rouge, F-11430 Gruissan, France
(3) INRA, UMR1083 Sciences pour l’Œnologie, F-34060 Montpellier, France
(4) IFV, Val de Loire, F-49470 Beaucouzé, France

Contact the author

Keywords

Sensory analysis, Terroir, Typicality, viticultural practices, oenological practices

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Effects of Non-Grape Materials (MOG) on wine quercetin composition: insights from synthetic and Merlot grape juice fermentation

Quercetin precipitation has become an increasingly common issue in red wine, often resulting in visually unpleasant sediments and diminished product quality.

Effect of plant fining agents in the must flotation process. Functional characterization

Flotation is one of the most used processes for clarifying white grape must after the pressing process. To date, gelatine is the more used fining agent, its action being improved when combined with bentonite and silica sol.

Hierarchy of the interactions between physical and biological parameters intervening in the Pyrenean Gascon foothill vineyard

Un travail sur les A.O.C. du piémont pyrénéen occidental permet de construire une hiérarchie de paramètres climatiques, géo-pédologiques, morphologiques, de saisir leurs niveaux d’interaction et d’élaborer une méthodologie pour proposer un zonage

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).