Terroir 2008 banner
IVES 9 IVES Conference Series 9 Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

Abstract

“Sangiovese” (Vitis vinifera L. sativa cv. Sangiovese) is the main grape variety to be established in Italy, being the only country in Europe where this grape is commonly found. Effects of different terroir on the aroma profiles in must of “Sangiovese” grapes were investigated in two Tuscany areas to study the relationship genotype/environment. Grape volatile compounds are the main contributor to the fresh and fruity note in wines. Compounds responsible for this aroma are different depending on the cultural practices and climatic or biological factors and grape volatile composition can greatly vary during ripening. Volatile compounds of grapes are generally present in trace amounts and we used a SPME method to determine aroma composition of “Sangiovese” grapes at different times during ripening and at harvest date. For a full understanding of the process, we also described by agronomic and phenological index the ripening of “Sangiovese” in these two different areas, as well as weather data.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Maurizio BOSELLI (1), Manuel DI VECCHI STARAZ (1), Laura PIERAGNOLI (2), Lidia CESERI (2), Marzia MIGLIORINI (3),Paolo VITI (3)

(1) Dipartimento di Scienze, Tecnologie e Mercati della Vite e del Vino, Università di Verona, Villa Lebrecht, Via della Pieve, 70 – 37029 San Floriano, Italy
(2) Dipartimento di Ortoflorofrutticoltura, Università di Firenze, Viale delle Idee, 30 – 50019 Sesto Fiorentino, Italy
(3) Laboratorio Chimico Merceologico – Azienda Speciale della Camera di Commercio di Firenze, via Orcagna, 70 – 50121 Firenze, Italy

Contact the author

Keywords

 profil aromatique, SPME, génotype/environnement, Montalcino

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Peptidomics in the wine industry: literature perspectives on functional importance and analytical methods

Winemaking is a globally significant industry in the field of food technology (218 mhL of wine estimated for 2024 harvest) [1], which activity produces tons of by-products annually, including pomace (pulp, stems, seeds, skins), lees, organic acids, CO2, and water [2].

Multidisciplinary strategies for understanding ill-defined concepts

Aims: The objective of the present work is to review strategies applied to decrypt multidimensional and ill-defined concepts employed by winemakers and to illustrate these strategies with recent applications.

Texas terroir: gis characterization of the texas high plains ava

The Texas High Plains AVA is one of eight officially recognized wine regions in Texas, established in 1993. Six local wineries, including the second-largest in Texas, are supported by approximately 50 vineyards, which are also major suppliers of grapes to Texas wineries outside the region.

A new step toward the comprehensive valorisation of grape marc through subcritical water extraction of polysaccharides

Winemaking generates a significant amount of waste. Grape marc, the main solid residue, constitutes 20-25% of the pressed grapes and approximately 8-9 million tons are produced globally each year.