Terroir 2008 banner
IVES 9 IVES Conference Series 9 Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

Abstract

“Sangiovese” (Vitis vinifera L. sativa cv. Sangiovese) is the main grape variety to be established in Italy, being the only country in Europe where this grape is commonly found. Effects of different terroir on the aroma profiles in must of “Sangiovese” grapes were investigated in two Tuscany areas to study the relationship genotype/environment. Grape volatile compounds are the main contributor to the fresh and fruity note in wines. Compounds responsible for this aroma are different depending on the cultural practices and climatic or biological factors and grape volatile composition can greatly vary during ripening. Volatile compounds of grapes are generally present in trace amounts and we used a SPME method to determine aroma composition of “Sangiovese” grapes at different times during ripening and at harvest date. For a full understanding of the process, we also described by agronomic and phenological index the ripening of “Sangiovese” in these two different areas, as well as weather data.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Maurizio BOSELLI (1), Manuel DI VECCHI STARAZ (1), Laura PIERAGNOLI (2), Lidia CESERI (2), Marzia MIGLIORINI (3),Paolo VITI (3)

(1) Dipartimento di Scienze, Tecnologie e Mercati della Vite e del Vino, Università di Verona, Villa Lebrecht, Via della Pieve, 70 – 37029 San Floriano, Italy
(2) Dipartimento di Ortoflorofrutticoltura, Università di Firenze, Viale delle Idee, 30 – 50019 Sesto Fiorentino, Italy
(3) Laboratorio Chimico Merceologico – Azienda Speciale della Camera di Commercio di Firenze, via Orcagna, 70 – 50121 Firenze, Italy

Contact the author

Keywords

 profil aromatique, SPME, génotype/environnement, Montalcino

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Volatile organic compounds (VOCs) are very important for the characterisation and quality of the final white wine. An oenological practice to increase the extraction of aroma compounds is the cold pre-fermentative maceration [1,2], although it may also release phenolic compounds that confer darker chromatic traits to white wines, not appreciated by consumers. This practice could be improved by the use of enzymes in order to facilitate the release of the odorous molecules. In this study, the effect of different enzyme treatments during skin contact on the chromatic characteristics and volatile composition of white musts from four winegrape varieties was evaluated.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

AIM: Valpolicella is a renowned Italian wine-producing region (Paronetto, 1981). Wines produced in its different sub-regions are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity

Grapevine sugar concentration model in the Douro Superior, Portugal

Increasingly warm and dry climate conditions are challenging the viticulture and winemaking sector. Digital technologies and crop modelling bear the promise to provide practical answers to those challenges. As viticultural activities strongly depend on harvest date, its early prediction is particularly important, since the success of winemaking practices largely depends upon this key event, which should be based on an accurate and advanced plan of the annual cycle. Herein, we demonstrate the creation of modelling tools to assess grape ripeness, through sugar concentration monitoring. The study area, the Portuguese Côa valley wine region, represents an important terroir in the “Douro Superior” subregion. Two varieties (cv. Touriga Nacional and Touriga Franca) grown in five locations across the Côa Region were considered. Sugar accumulation in grapes, with concentrations between 170 and 230 g l-1, was used from 2014 to 2020 as an indicator of technological maturity conditioned by meteorological factors. The climatic time series were retrieved from the EU Copernicus Service, while sugar data were collected by a non-profit organization, ADVID, and by Sogrape, a leading wine company. The software for calibrating and validating this model framework was the Phenology Modeling Platform (PMP), version 5.5, using Sigmoid and growing degree-day (GDD) models for predictions. The performance was assessed through two metrics: Roots Mean Square Error (RMSE) and efficiency coefficient (EFF), while validation was undertaken using leave-one-out cross-validation. Our findings demonstrate that sugar content is mainly dependent on temperature and air humidity. The models achieved a performance of 0.65

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.