Terroir 2008 banner
IVES 9 IVES Conference Series 9 Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

Abstract

“Sangiovese” (Vitis vinifera L. sativa cv. Sangiovese) is the main grape variety to be established in Italy, being the only country in Europe where this grape is commonly found. Effects of different terroir on the aroma profiles in must of “Sangiovese” grapes were investigated in two Tuscany areas to study the relationship genotype/environment. Grape volatile compounds are the main contributor to the fresh and fruity note in wines. Compounds responsible for this aroma are different depending on the cultural practices and climatic or biological factors and grape volatile composition can greatly vary during ripening. Volatile compounds of grapes are generally present in trace amounts and we used a SPME method to determine aroma composition of “Sangiovese” grapes at different times during ripening and at harvest date. For a full understanding of the process, we also described by agronomic and phenological index the ripening of “Sangiovese” in these two different areas, as well as weather data.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Maurizio BOSELLI (1), Manuel DI VECCHI STARAZ (1), Laura PIERAGNOLI (2), Lidia CESERI (2), Marzia MIGLIORINI (3),Paolo VITI (3)

(1) Dipartimento di Scienze, Tecnologie e Mercati della Vite e del Vino, Università di Verona, Villa Lebrecht, Via della Pieve, 70 – 37029 San Floriano, Italy
(2) Dipartimento di Ortoflorofrutticoltura, Università di Firenze, Viale delle Idee, 30 – 50019 Sesto Fiorentino, Italy
(3) Laboratorio Chimico Merceologico – Azienda Speciale della Camera di Commercio di Firenze, via Orcagna, 70 – 50121 Firenze, Italy

Contact the author

Keywords

 profil aromatique, SPME, génotype/environnement, Montalcino

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Perceived aroma plays an important role in wine quality, and it depends mainly on the volatile composition. Volatile organic compounds (VOCs) from grapes and those formed during winemaking are involved in the sensory complexity of wines. In aroma-neutral winegrape varieties, the winemaking process itself, and particularly alcoholic fermentation (AF), impacts strongly on the organoleptic characteristics of wines due to the formation of volatile alcohols, acids, and esters. In addition, phenolic compounds could contribute not only to the wine color but also to VOCs evolution during AF.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Investigating the conceptualization and practices linked to peppery notes in Syrah red wines by French winemakers from different regions

The peppery attribute is often used to describe the aroma of Syrah wines. Rotundone was identified as the main aroma compound responsible for these notes. A significant percentage of anosmic respondents to this molecule was reported in previous studies. However, in most cases, these anosmic respondents, formally tested through three-alternative forced choice (3AFC), frequently declare being able to perceive peppery notes in wines. The main objective of this study was to investigate how anosmic French producers from two different regions conceptualize the peppery notes in Syrah red wines, and how they link it to production practices in comparison with non-anosmic producers.

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl
compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.