A GIS Analysis of New Zealand Terroir

Abstract

This paper summarises a national survey of the geological setting of vineyards in New Zealand. We also provide an overview of climate, slope, aspect and varietals planted in New Zealand vineyards as a whole and for some individual regions.
New Zealand produces premium quality wines and its wine industry is growing rapidly. Growing degree days in the winegrowing regions range from 900 in cool Central Otago and Canterbury to over 1600 in the warmest region in the country, Auckland. Average growing season temperatures for the same regions range from approximately 14.3°C to 17.6°C. New Zealand vineyards are planted mainly on flat alluvial and glacial gravels with slopes of less than 3°. Rapid growth is pushing new plantings onto adjacent hillsides that are underlained by greywacke, schist and less commonly limestone. The expansion of the industry onto these different substrates will affect grape and wine characteristics; this provides significant opportunities to develop new styles of New Zealand ultra-premium wines

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Stephen P. IMRE and Jeffrey L. MAUK

School of Geography, Geology and Environmental Science, University of Auckland, Private Bag, 92019 Auckland, New Zealand

Contact the author

Keywords

GIS, terroir, New Zealand, geology, soil, climate

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88).

Early detection project – make a GTD infection visible without disease symptoms

The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world

Prediction of astringency in red wine using tribology approach to study in-mouth perception

AIM Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019).

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.