Anthropogenic intervention in shaping Terroir in a California Pinot noir vineyard

Abstract

In many vineyards optimal parcel size exceeds the geospatial complexity that exists in soils and topographic features that influence hydrological properties, sunlight interception and soil depth and texture (available water capacity). A premise of precision management is that such variation can be lessened, but the practices that would be used to achieve this have not been subjected to rigorous scientific evaluation. During 2004-2006 we examined spatial heterogeneity of soils and topographical features and related them to yield, industrial quality (soluble solids content, titratable acidity and pH), vine water status (predawn, ψPD, and midday, ψL, leaf water potential) and vigor (pruning weights), in an extremely complex hillside vineyard that had undergone terraforming as a means of increasing planted hectares and diminishing soils variation. Factor analysis was used to identify latent variables used in a multiple linear regression model with least squares estimation to identify correlations among soil and topographic factors, vine physiology and industrial quality parameters. Our results indicated that overall vine water status (ψPD and ψL) had the largest influence on within vineyard variation on an interannual basis, and that extreme spatial heterogeneity was evident in this vineyard in spite of terraforming efforts.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

David R. SMART (1), Alison BREAZEALE (1), Joshua VIERS (2), Dr. Richard PLANT (3)

(1) Department of Viticulture & Enology, University of California, One Shields Avenue, Davis CA 95616
(2) Department of Environmental Science & Policy, University of California, One Shields Avenue Davis CA 95616
(3) Department of Plant Sciences, University of California, One Shields Avenue, Davis CA 95616

Contact the author

Keywords

Complex slopes, ripening uniformity, precision viticulture, water potential, terraforming

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Linking soil C cycling and microbial diversity under regenerative management in Northern California (USA) vineyards

Regenerative agriculture (RA) practices aim to minimize soil disturbance, keep soil covered, maintain living roots underground, and integrate livestock to improve soil health and sustainability.

Recognition of terroir in american viticultural areas

Un’ Area di Viticultura Americana, detta AVA, è una regione vinicola delimitata ed è dis­tinguibile da caratteristiche geografiche i cui confini sono stati definiti da regolamenti. Il sistema AVA rappresenta un ‘accettazione del concetto di terroir (terreno), come dimostra­no gli studi che confermano il carattere regionale dei vini AVA e dalla sviluppo di sub­denominazioni più relazionate al terreno.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

Better understand the soil wet bulb formation with subsurface or aerial drip irrigation in viticulture

The gradual change in rainfall patterns experienced in the south of France vineyards, especially around the Mediterranean sea, means that the vines are increasingly subject to summer drought. The winegrowers developped the use of irrigation techniques to ensure the maintenance of competitive yields in the production of wines under Protected Geographical Indication label. In practice, drip irrigation pipes can be installed above the ground or buried into the soil as well as at different distances from the vine row. The objective of this study was to examine the profiles of the wet bulbs of the soil obtained from two drip irrigation systems : aerial drip located under the vine row and subsurface drip placed in the middle of the inter-row. This experiment took place over two consecutive seasons (2020-2021) on a 3.4 ha Viognier plot in the Mediterranean region (PGI Oc, France) on sandy clay soil. The annual rainfalls were less than 400 mm. Soil water content probes were installed at different depths (20 – 40 – 60 – 80 cm) and at different lateralities from the vine row (30 – 60 – 90 – 120 cm) to control the formation of the soil wet bulb during irrigation. The mapping and the analysis of the data allowed a better understanding and differentiation of the water percolation when irrigating with subsurface or aerial drip. For the same amount of water and without differences of vine water status, it is shown that in a subsurface drip irrigation situation, the size of the wet bulb formed is larger than in aerial drip irrigation system.