Anthropogenic intervention in shaping Terroir in a California Pinot noir vineyard

Abstract

In many vineyards optimal parcel size exceeds the geospatial complexity that exists in soils and topographic features that influence hydrological properties, sunlight interception and soil depth and texture (available water capacity). A premise of precision management is that such variation can be lessened, but the practices that would be used to achieve this have not been subjected to rigorous scientific evaluation. During 2004-2006 we examined spatial heterogeneity of soils and topographical features and related them to yield, industrial quality (soluble solids content, titratable acidity and pH), vine water status (predawn, ψPD, and midday, ψL, leaf water potential) and vigor (pruning weights), in an extremely complex hillside vineyard that had undergone terraforming as a means of increasing planted hectares and diminishing soils variation. Factor analysis was used to identify latent variables used in a multiple linear regression model with least squares estimation to identify correlations among soil and topographic factors, vine physiology and industrial quality parameters. Our results indicated that overall vine water status (ψPD and ψL) had the largest influence on within vineyard variation on an interannual basis, and that extreme spatial heterogeneity was evident in this vineyard in spite of terraforming efforts.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

David R. SMART (1), Alison BREAZEALE (1), Joshua VIERS (2), Dr. Richard PLANT (3)

(1) Department of Viticulture & Enology, University of California, One Shields Avenue, Davis CA 95616
(2) Department of Environmental Science & Policy, University of California, One Shields Avenue Davis CA 95616
(3) Department of Plant Sciences, University of California, One Shields Avenue, Davis CA 95616

Contact the author

Keywords

Complex slopes, ripening uniformity, precision viticulture, water potential, terraforming

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Influence of soil management and vine water regime on leaf gas exchange, berry composition and quality of Chasselas wines in Switzerland

A soil management and vine irrigation trial was carried out for 4 consecutive years from 2020 to 2023 at agroscope’s experimental vineyard in leytron (Valais, Switzerland) with the Chasselas grape variety (clone 14-33/4, grafted on 5bb). Two types of soil maintenance (bare soil with chemical weeding and sown grass) coupled with two water regimes (with and without drip irrigation from flowering to veraison) were compared in a randomized design with four replicates of 10 vines each.

Mineral-wine profile and AI: wine authentication and identification

Enhancing the mineral wine profile: from authentication to identification by artificial intelligence for enhanced security. Analysis of a wine’s mineral concentration profile provides a distinctive fingerprint for each cuvée. Unlike organic profiles, this identification signature remains stable over time and can be deciphered using direct analysis by inductively coupled mass spectrometry (icp-ms).

Teran grape quality influenced by different irrigation treatments

Teran is an important native variety grown in Istria known for its high level of polyphenols and intensive fruity character of wines. Teran’s yield and wine typicity have recently decreased due to climate changes (increased temperature and severe drought). Four drip irrigation treatments (25%, 50%, 75%, 100% of total evapotranspiration) and control were investigated for the influence on Teran yield and quality, where focus was given to the content and composition of main polyphenolic and volatile compounds in grapes. Irrigation positively influenced yield since the berry weight also increased with increased irrigation. This resulted in the highest yield for 100% ETc. The highest concentration of polyphenols had control, while the irrigation treatments did not differ significantly. However, there was a tendency to decrease concentration with increased irrigation probably due to the increased berry size, which led to a dilution effect. Regarding the volatile compounds, the most abundant group was alcohols, followed by acids.

The use of pulsed fluorescence detector to quantify free SO2 in wines via the headspace

Pulsed fluorescence SO2 analyzers are widely used for atmospheric monitoring. They are accurate, portable, sensitive and their price are reduced compared to advanced techniques like gas chromatography with sulfur chemiluminescence detection (GC-SCD).

Evaluation of sap flow and trunk diameter measurements in grapevines using time series decomposition

Grapevines are very sensitive to weather conditions. Excessively hot and dry periods trigger the activation of survival mechanisms, such as reduction of crop transpiration and the redistribution of water. Monitoring these mechanisms is, therefore, essential to better understand the grapevine water dynamics and maximize water-use efficiency.