Terroir 2008 banner
IVES 9 IVES Conference Series 9 New tools for a visual analysis of vineyard landscapes?

New tools for a visual analysis of vineyard landscapes?

Abstract

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person. 
We try here to analyse more precisely the constitutive forms of vineyard landscapes and their visual perception. We use different complementary methods: 
– plastic and aesthetic landscape analysis, 
– modelling of some parameters like visual accessibility of landscape, 
– analysis of the observer’s attitude and eye tracking. 
Combination of these different analysis tools gives us a better knowledge of vineyard landscapes and their evolutions. It can appear useful for touristic or technical development. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Stéphanie OULES BERTON (1), Vincent BOUVIER (2), Laure CORMIER (2), Jean DUCHESNE (2), Fabienne JOLIET (2)

(1) Confédération des Vignerons du Val de Loire – Institut National d’Horticulture (INH)
(2) Institut National d’Horticulture (INH)
INH – 2 rue Le Nôtre – 49045 Angers cedex 1 – France

Contact the author

Keywords

vineyard landscape, forms, visual perception, plastic analysis, eye tracking 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Sensory patterns observed towards the oxidation of white, rosé and sparkling wines: An exploratory study

Oxygen management is crucial in terms of wine quality. Even more for white and rosé wines, which are less protected against oxidation than reds due to the lower levels of antioxidant polyphenols. This need is due to the existence of equilibria between chemical forms depending on the redox potential.

Determination of aromatic characteristics from Syrah and Tempranillo tropical wines elaborated in Northeast Brazil

Dans la region Nord-Est du Brésil, située à la Vallée du São Francisco, localiséee entre les paralleles 8-9º HS, la production de vins tropicaux a commencé il y a une vigntaine d’années. Dans cette région, il est possible d’avoir au minimum deux récoltes par an, car la moyenne de température est de 26 ºC, avec une pluviosité moyenne de 550 mm entre les mois de janvier-avril.

L’essor des produits “No-Low” : nouveaux défis pour l’étiquetage et la réglementation

In recent years, “no-low” products seem to become a new worldwide trend. It appears to be a possible answer to the well-known context of climate change, the decline in wine consumption, and the wellness/health trend (“free from” claims, vegan, and so on…) That consumers are looking for. The aim of this study is to provide an overview of the “no-low” products sold in the french market (but not only french products), focusing on the labelling, packaging, and sales presentation of these products.

Système de Classification Climatique Multicritères (CCM) Géoviticole

Le travail concerne en premier la méthodologie de caractérisation du climat des vignobles, à l’échelle du macroclimat des régions viticoles du monde (géoviticulture). Trois indices climatiques viticoles synthétiques

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.