Terroir 2008 banner
IVES 9 IVES Conference Series 9 The Fontevraud charter in favour of the viticultural landscapes

The Fontevraud charter in favour of the viticultural landscapes

Abstract

The viticultural regions of the world have the advantage of a remarkable diversity of landscapes which are the reflection of the winegrowers’ capacity to adapt to the different geomorphological and climatic specificities of the terroirs, more generally speaking, this aesthetic and heritage aspect of the terroir is also part and parcel of the notion of sustainable viticulture.
But this cultural ecosystem is fragile. The modernity, in its functional approach, has often hidden this patrimonial wealth handed down by the previous generations, a heritage sometimes perceived as a hindrance in the face of the technological evolutions and economic requirements.
In this frame, the Val de Loire region initiated the first international symposium on viticultural landscapes which took place from 2nd to 4th July 2003 at the Fontevraud abbey.
As an extension, a charter has been drawn up in collaboration notably with the Ministry of Agriculture and Ecology, the National Institute for Controlled Origins, the International Organization of Vines and Wines with the support of the French Commission for Unesco and the International Council for Monuments and Sites.
This charter, perfectly appropriate for the European landscape convention, advocates knowledge and understanding of the evolution of the viticultural landscapes in their aesthetic, cultural, historical and scientific aspects. The charter combines a well-informed review of the landscape organization of these terroirs and a joint project of both professional structures and local communities, so as to finalize protective and upgrading actions, in the frame of a management scheme.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

(1) Institut Français de la Vigne et du Vin17, rue Jean Chandon Moët, BP 20046 51202 Epernay cedex
(2) Ministère de l’agriculture et de la pêche,19 avenue du Maine, 75732 Paris cedex 15
(3) Interloire, 73 rue plantagenêt – BP 52327, 49023 Angers cedex 02

Contact the author

Keywords

paysages, terroir, viticulture durable, zonage

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Somatic embryogenesis (SE) has been used in a variety of biotechnology applications such as virus elimination, cryopreservation, induced mutagenesis and genetic transformation. The SE induction process may cause DNA alterations and ploidy changes, which may provide a source of genetic variability useful for the improvement of agronomic characteristics of plants. This research aims at investigating the spontaneous alterations of the genome in grapevine plants regenerated through SE. Regenerants obtained from different embryogenic events from three different grapevine genotypes (Catarratto, Frappato and Nero d’Avola) were analysed.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

Artificial intelligence-driven classification method of grapevine phenology using conventional RGB imaging

The phenological stage of the grapevine (Vitis vinifera L.) represents a fundamental element in vineyard management, since it determines key practices such as fertilization, irrigation, phytosanitary interventions and optimal harvest time (Mullins et al., 1992).

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.