Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Cover crop influence on water relations, yield, grape and wine composition of Pinot noir

Cover crop influence on water relations, yield, grape and wine composition of Pinot noir

Abstract

The effect of cover crop on the water relations, yield and grape composition of Pinot noir vines was investigated during two seasons (2003 and 2004) in a gravely soil located in Tarragona (Spain). Seventeen-year-old vines, grafted onto R110 and trained onto a Ballerina training system, were used. Treatments (Rye grass and a clean tillage control) were replicated four times in a block layout. Leaf water potential was measured during mid-day at pea size, véraison and ripeness stages. Berry composition was determined at ripeness. At harvest, yield components were determined and one wine made per treatment. Severe water stress occurred in 2003, which resulted in the grass cover treatment producing less leaf area per vine and a reduction in leaf water potential during the day. However, in 2004, significant differences occurred only at 8:00. The same pattern was observed for berry weight and the yield parameters; they were lower in 2003 with cover grass. The anthocyanin content, total soluble solids and titratable acidity decreased strongly after véraison, only in 2003. Grass cover had a negative effect on total phenol and alcohol contents of wines in the extremely dry year. Contrasting effects were found in 2004.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Montse NADAL

CeRTA, Dept de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona. Universitat Rovira i Virgili,
Campus Sescelades, Marcel·lí Domingo, s/n, 43007 Tarragona, Espagne

Contact the author

Keywords

cover crop, leaf water potential, yield, ripeness, wine composition

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

The chances for using non-saccharomyces wine yeasts for a sustainable winemaking

Climate changes and the trend towards organic and more sustainable winemaking highlighted the need to use biological methodologies. The reduction in the use of SO2, the need of the reduction of ethanol content of wines and the now need to reduce or eliminate chemical phytosanitary products, have prompted the search for alternative practices.

Monitoring of grapevine stem potentials with an embedded microtensiometer

Vine water status is a crucial determinant of vine growth, productivity, fruit composition and terroir or wine style; therefore, regulating water stress is of great importance. Since vine water status depends on both soil moisture and aerial environment and is very temporally dynamic, direct measurement of vine water potential is highly preferable. Current methods only provide limited data. To regulate vine water status it is critical to monitor vine water status to be able to: (1) measure vine water status to predict the effect of water stress on the overall vineyard performance and fruit quality and optimize harvest management and wine-making (2) properly regulate the water status to impose for a desired fruit quality or style (3) determine if water management has reached the desired stress level.

Vineyard nutrient budget and sampling protocols

Vineyard nutrient management is crucial for reaching production-specific quality standards, yet timely evaluation of nutrient status remains challenging. The existing sampling protocol of collecting vine tissue (leaves and/or petioles) at bloom or veraison is time-consuming. Additionally, this sampling practice is too late for in-season fertilizer applications (e.g. N is applied well before bloom). Therefore alternative early-season protocols are necessary to predict the vine nutrient demand for the upcoming season. The main goals of this project are to 1) optimize existing tissue sampling protocols; 2) determine the amount of nutrients removed at the end of the growing season.

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining.

Effects of soil characteristics on manganese transfer from soil to vine and wine

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.