Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Cover crop influence on water relations, yield, grape and wine composition of Pinot noir

Cover crop influence on water relations, yield, grape and wine composition of Pinot noir

Abstract

The effect of cover crop on the water relations, yield and grape composition of Pinot noir vines was investigated during two seasons (2003 and 2004) in a gravely soil located in Tarragona (Spain). Seventeen-year-old vines, grafted onto R110 and trained onto a Ballerina training system, were used. Treatments (Rye grass and a clean tillage control) were replicated four times in a block layout. Leaf water potential was measured during mid-day at pea size, véraison and ripeness stages. Berry composition was determined at ripeness. At harvest, yield components were determined and one wine made per treatment. Severe water stress occurred in 2003, which resulted in the grass cover treatment producing less leaf area per vine and a reduction in leaf water potential during the day. However, in 2004, significant differences occurred only at 8:00. The same pattern was observed for berry weight and the yield parameters; they were lower in 2003 with cover grass. The anthocyanin content, total soluble solids and titratable acidity decreased strongly after véraison, only in 2003. Grass cover had a negative effect on total phenol and alcohol contents of wines in the extremely dry year. Contrasting effects were found in 2004.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Montse NADAL

CeRTA, Dept de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona. Universitat Rovira i Virgili,
Campus Sescelades, Marcel·lí Domingo, s/n, 43007 Tarragona, Espagne

Contact the author

Keywords

cover crop, leaf water potential, yield, ripeness, wine composition

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Physiological behavior of the Chasselas grape variety under water deficit: 30 years of experiments in Switzerland

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.

Contribution to the sensory and volatile characterization of four traditional Galician red varieties

Galicia, a region sited in the northwest of Spain, is one of the most important wine production area, with five Appellations of Origin Controlled (AOC).