Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Terroir and vine water relation effects on grape ripening and wine quality of Syrah/R99

Terroir and vine water relation effects on grape ripening and wine quality of Syrah/R99

Abstract

A Syrah/R99 vineyard in the Stellenbosch area was used. The vineyard is vertically trained and spaced 2.75 x 1.5 m in north-south orientated rows on terroir with Glenrosa soil and west-facing slope. Irrigation (to 100% field water capacity) treatments were applied at different development stages [all stages (including berry set stage); pea size; véraison; post-véraison]. Combined effects of water status and ripeness level were investigated. Preliminary results are presented. Irrigated and non-irrigated vines differed in terms of soil water status, particularly during ripening. Vine water status during late ripening stages varied according to timing of water supply. Secondary leaves seemed most sensitive to water stress, but essential to buffer extreme terroir conditions. Vines displayed independence of soil water during late ripening. Irrigation favoured berry mass stability. Sucrose flow to berries was restricted at the last ripeness level, indicated by increased concentrations in bunch rachis. This may serve as tool to determine a window for harvesting. The window from ripe to over-ripe grapes was reduced when vines were exposed to lower soil water levels. Similar anthocyanin patterns found with skin and whole berry extraction and reduced skin sucrose contents indicated disintegration, oxidation and respiration during the last ripeness level in skins. Treatments being deficit-managed for a longer period showed earlier maximum wine quality (ripeness level 1). Vines irrigated at all development stages and those irrigated at pea size stage, showed later maximum wine quality (ripeness level 2). Wine quality of all treatments was reduced at the third ripeness level. Pre- and post-véraison cultivating conditions seem to have a determining effect on grape ripening. Preliminary results showed that the ripening period may be extended and berry condition maintained for longer by improved vine water status on a specific terroir.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Jacobus J. HUNTER (1) and Alain DELOIRE (2)

(1) ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa
(2) Agro Montpellier, UMR 1083 « Sciences pour l’œnologie et la viticulture », 2 place Viala, 34060 Montpellier cedex 1, France

Contact the author

Keywords

terroir, water relations, canopy, grape ripening, wine quality

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Analysis of vineyard soil after mulching with municipal solid waste (MSW)-compost

The use of compost as amendment in agriculture is a well-established practice, strongly recommended for numerous benefits.

Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Compactness is a complex trait of V. vinifera L. and is defined ultimately by the portion of free space within the bunch which is not occupied by the berries. A high degree of compactness results in poor ventilation and consequently a higher susceptibility to fungal diseases, diminishing the quality of the fruit. The easiness to conceptualize the trait and its importance arguably contrasts with the difficulty to measure and quantify it. However, recent technical advancements have allowed to study this attribute more accurately over the last decade. Our main objective was to explore the underlying genetics determining bunch compactness by applying updated phenotyping methods in a collection of V. vinifera L. cultivars with a wide genetic diversity.

AI and blockchain synergy-driven reconstruction of nutritional health value chains in the wine industry

The increasing demand for healthier, more transparent, and sustainable wine products has prompted the need for innovative solutions to optimize the wine health value chain.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

The anthocyanin profile of galician endangered varieties. A tool for varietal selection

AIM: The current loss of genetic grapevine diversity is mainly due to the reduced number of varieties used for making wine. A way of preserved endangered varieties is the establishment of germplasm banks.