Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Terroir and vine water relation effects on grape ripening and wine quality of Syrah/R99

Terroir and vine water relation effects on grape ripening and wine quality of Syrah/R99

Abstract

A Syrah/R99 vineyard in the Stellenbosch area was used. The vineyard is vertically trained and spaced 2.75 x 1.5 m in north-south orientated rows on terroir with Glenrosa soil and west-facing slope. Irrigation (to 100% field water capacity) treatments were applied at different development stages [all stages (including berry set stage); pea size; véraison; post-véraison]. Combined effects of water status and ripeness level were investigated. Preliminary results are presented. Irrigated and non-irrigated vines differed in terms of soil water status, particularly during ripening. Vine water status during late ripening stages varied according to timing of water supply. Secondary leaves seemed most sensitive to water stress, but essential to buffer extreme terroir conditions. Vines displayed independence of soil water during late ripening. Irrigation favoured berry mass stability. Sucrose flow to berries was restricted at the last ripeness level, indicated by increased concentrations in bunch rachis. This may serve as tool to determine a window for harvesting. The window from ripe to over-ripe grapes was reduced when vines were exposed to lower soil water levels. Similar anthocyanin patterns found with skin and whole berry extraction and reduced skin sucrose contents indicated disintegration, oxidation and respiration during the last ripeness level in skins. Treatments being deficit-managed for a longer period showed earlier maximum wine quality (ripeness level 1). Vines irrigated at all development stages and those irrigated at pea size stage, showed later maximum wine quality (ripeness level 2). Wine quality of all treatments was reduced at the third ripeness level. Pre- and post-véraison cultivating conditions seem to have a determining effect on grape ripening. Preliminary results showed that the ripening period may be extended and berry condition maintained for longer by improved vine water status on a specific terroir.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Jacobus J. HUNTER (1) and Alain DELOIRE (2)

(1) ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa
(2) Agro Montpellier, UMR 1083 « Sciences pour l’œnologie et la viticulture », 2 place Viala, 34060 Montpellier cedex 1, France

Contact the author

Keywords

terroir, water relations, canopy, grape ripening, wine quality

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Étude des relations sol-vigne sur le vignoble de Côte Rôtie

La topographie du vignoble de Côte Rôtie, la prédominance de la non culture ainsi que la structure très légère des sols amènent les vignerons à s’interroger sur l’entretien du sol, la conduite de la fertilisation de leurs parcelles ainsi que sur le développement racinaire de la vigne.

Phylloxera root infection drives vineyard water

Most of the rootstocks used in viticulture today are partly resistant against grape phylloxera (Daktulosphaira vitifoliae Fitch) and host phylloxera on the root system without conspicuous negative impacts on fruit production).

Genome wide association mapping of phenology related traits in Vitis vinifera L

Climate change, with rise in temperatures, is leading to an advance in the dates of phenological stages, with a loss in quality of the grape final product. Therefore, the understanding of the genetic determinants driving the phenological stages of flowering, veraison and the interval between them, represents a target for the development of grapevine’s cultivar adapted to the changing environment.
Here we conducted a GWA study to identify SNPs significantly associated to flowering time, veraison time and to the interval among them. A germplasm collection (CREA-VE in Susegana, Treviso, Italy) including 649 grapevine’s cultivar representing 365 unique genotypes was considered.

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).

Environmental and yearly influences on four Sicilian grape clones under climate change challenges

By the end of this century, up to 90% of traditional viticulture regions in the Mediterranean, including Sicily, are projected to face extinction due to escalating climate challenges such as severe droughts, heatwaves, and unseasonal rains.