Terroir 2006 banner
IVES 9 IVES Conference Series 9 Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

Abstract

In the Burgundy vineyard, frequent tractor traffic and management of inter-rows alternating grass cover and chemical weed-control lead to structural soil contrast between row and inter-row. The aim of this study was to characterize and model water flow in relation with topsoil structure modifications induced by these practices. Void ratio of the different soil volumes were determined using bulk density measurements. Water flow was measured with tensiometers under two simulated rainfalls. Hydraulics properties of soil volumes defined at the profile level was characterized by water retention curve and infiltrometer measurements. Hydrus 2D software was used for 2D modelling of water flow on a transect perpendicular to the rows. Compaction of the 25 first centimetres of inter-row topsoil was observed in the two types of interrows. It led to a void ratio reduction of 37% and a reduction of the saturated hydraulic conductivity generating less infiltration than in rows. Grass-covered inter-rows were characterized by a macroporous mat root at the soil surface (0-3 cm) in the upper part of the underlying compacted volume. More infiltration was measured in inter-rows with grass cover than in chemically weed-controlled inter-rows. Modelling fairly reproduced contrast of water flow contrast in relation with soil structure for the first 25 centimetres. However, modelling was unable to reproduce flow in volume likely to be affected by preferential flow. Between 25 and 70 centimetres depth, soils containing numerous vine roots would be the seat of preferential flow pathways distributing water laterally from rows to inter-rows. Effectiveness of preferential pathways would increase with soil moisture and rainfall intensity.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Pierre CURMI (1), Marion CHATELIER (1,2) et Gérard TROUCHE (1)

(1) Établissement National d’Enseignement Supérieur Agronomique de Dijon, 26 bd du Dr Petitjean, 21079 Dijon cedex, France
(2) Université de Bourgogne, UMR INRA A 111 « Microbiologie et Géochimie des sols », Centre des Sciences de la Terre, 6 bd Gabriel, 21000 Dijon cedex, France

Contact the author

Keywords

hydraulics properties, tensiometer, resistivity, infiltration, preferential flow

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Monitoring the tawny port wine aging process using precision enology

AIM: Tawny Port wine is produced in the Douro Demarcated Region by blending several fortified wines in different aging stages. During the aging process in small wood barrels, the red wine color progressively develops into tawny, medium tawny, or light tawny.

Effects of grapevine mycorrhizal association on fine root dynamics depend on rootstock genotype

Context and Purpose of the study. Arbuscular mycorrhizal fungi (AMF) symbiosis with grapevines is a key component of vineyard ecosystems.

Characterization of berry softening and sugar accumulation dynamics in a slow-ripening genotype and its response to abscisic acid treatments

In the current viticultural context, global warming leads to advanced and possibly accelerated ripening which can alter the balance among desirable grape quality traits sought for winemaking. Evaluation of genetic material that displays delayed and/or slower ripening could uncover a potential “slow ripening” trait for incorporation into commercial varieties through breeding. In this study, we evaluated a white-fruited selection discovered in the Grape Breeding and Genetics program at E. & J. Gallo Winery that displayed an unusual ripening pattern compared to standard varieties. Vines of the slow-ripening selection did not differ in their visual appearance, water status or gas exchange characteristics compared to vines of its normal-ripening sibling.

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.

Management of varietal thiols in white and rosé wines using biotechnical tools

The present study evaluates the effect of prefermentative maceration enzymes and yeast autolysate on the concentration of conjugated precursors and volatile thiols, respectively.Sauvignon blanc and Merlot grapes underwent skin-contact maceration with or without pectolytic enzymes, for the production of white and rosé wines