Terroir 2006 banner
IVES 9 IVES Conference Series 9 Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

Abstract

In the Burgundy vineyard, frequent tractor traffic and management of inter-rows alternating grass cover and chemical weed-control lead to structural soil contrast between row and inter-row. The aim of this study was to characterize and model water flow in relation with topsoil structure modifications induced by these practices. Void ratio of the different soil volumes were determined using bulk density measurements. Water flow was measured with tensiometers under two simulated rainfalls. Hydraulics properties of soil volumes defined at the profile level was characterized by water retention curve and infiltrometer measurements. Hydrus 2D software was used for 2D modelling of water flow on a transect perpendicular to the rows. Compaction of the 25 first centimetres of inter-row topsoil was observed in the two types of interrows. It led to a void ratio reduction of 37% and a reduction of the saturated hydraulic conductivity generating less infiltration than in rows. Grass-covered inter-rows were characterized by a macroporous mat root at the soil surface (0-3 cm) in the upper part of the underlying compacted volume. More infiltration was measured in inter-rows with grass cover than in chemically weed-controlled inter-rows. Modelling fairly reproduced contrast of water flow contrast in relation with soil structure for the first 25 centimetres. However, modelling was unable to reproduce flow in volume likely to be affected by preferential flow. Between 25 and 70 centimetres depth, soils containing numerous vine roots would be the seat of preferential flow pathways distributing water laterally from rows to inter-rows. Effectiveness of preferential pathways would increase with soil moisture and rainfall intensity.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Pierre CURMI (1), Marion CHATELIER (1,2) et Gérard TROUCHE (1)

(1) Établissement National d’Enseignement Supérieur Agronomique de Dijon, 26 bd du Dr Petitjean, 21079 Dijon cedex, France
(2) Université de Bourgogne, UMR INRA A 111 « Microbiologie et Géochimie des sols », Centre des Sciences de la Terre, 6 bd Gabriel, 21000 Dijon cedex, France

Contact the author

Keywords

hydraulics properties, tensiometer, resistivity, infiltration, preferential flow

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.

The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape

Grapevine is one of the most extensively cultivated fruit crops, playing a crucial role in the economies of many grape-growing regions around the world.

Post-plant nematicides: too little, too late for Northern root-knot nematode management

Context and Purpose. Management of plant-parasitic nematodes in perennial cropping systems such as wines grapes is challenging.