Terroir 2006 banner
IVES 9 IVES Conference Series 9 Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

Abstract

In the Burgundy vineyard, frequent tractor traffic and management of inter-rows alternating grass cover and chemical weed-control lead to structural soil contrast between row and inter-row. The aim of this study was to characterize and model water flow in relation with topsoil structure modifications induced by these practices. Void ratio of the different soil volumes were determined using bulk density measurements. Water flow was measured with tensiometers under two simulated rainfalls. Hydraulics properties of soil volumes defined at the profile level was characterized by water retention curve and infiltrometer measurements. Hydrus 2D software was used for 2D modelling of water flow on a transect perpendicular to the rows. Compaction of the 25 first centimetres of inter-row topsoil was observed in the two types of interrows. It led to a void ratio reduction of 37% and a reduction of the saturated hydraulic conductivity generating less infiltration than in rows. Grass-covered inter-rows were characterized by a macroporous mat root at the soil surface (0-3 cm) in the upper part of the underlying compacted volume. More infiltration was measured in inter-rows with grass cover than in chemically weed-controlled inter-rows. Modelling fairly reproduced contrast of water flow contrast in relation with soil structure for the first 25 centimetres. However, modelling was unable to reproduce flow in volume likely to be affected by preferential flow. Between 25 and 70 centimetres depth, soils containing numerous vine roots would be the seat of preferential flow pathways distributing water laterally from rows to inter-rows. Effectiveness of preferential pathways would increase with soil moisture and rainfall intensity.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Pierre CURMI (1), Marion CHATELIER (1,2) et Gérard TROUCHE (1)

(1) Établissement National d’Enseignement Supérieur Agronomique de Dijon, 26 bd du Dr Petitjean, 21079 Dijon cedex, France
(2) Université de Bourgogne, UMR INRA A 111 « Microbiologie et Géochimie des sols », Centre des Sciences de la Terre, 6 bd Gabriel, 21000 Dijon cedex, France

Contact the author

Keywords

hydraulics properties, tensiometer, resistivity, infiltration, preferential flow

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Spectral discrimination between Vitis vinifera and labrusca by spectroradiometric techniques

Brazil is one of the few countries where vineyards of Vitis labrusca and Vitis vinifera coexist in the same geographical spaces, due to complex processes of territorial occupation by successive waves of European settlers.

Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

La région viticole de San Juan (Argentine) est marquée par des températures très élevées et des variations diurnes faibles. La valorisation de la connaissance de cet environnement et de ses interactions avec le fonctionnement de la vigne et le lien au vin passent par l’étude de ses terroirs et de leur caractérisation. Le point de départ de ce travail est l’étude des zones mésoclimatiques aptes à la culture de la vigne de la Province de San Juan et à la caractérisation des sols de cette même région. L’objectif est de définir le potentiel vitivinicole des zones considérées.

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature
especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and
iii) identifying the impact of temperature on grape berry attributes.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.