Terroir 2006 banner
IVES 9 IVES Conference Series 9 Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

Abstract

In the Burgundy vineyard, frequent tractor traffic and management of inter-rows alternating grass cover and chemical weed-control lead to structural soil contrast between row and inter-row. The aim of this study was to characterize and model water flow in relation with topsoil structure modifications induced by these practices. Void ratio of the different soil volumes were determined using bulk density measurements. Water flow was measured with tensiometers under two simulated rainfalls. Hydraulics properties of soil volumes defined at the profile level was characterized by water retention curve and infiltrometer measurements. Hydrus 2D software was used for 2D modelling of water flow on a transect perpendicular to the rows. Compaction of the 25 first centimetres of inter-row topsoil was observed in the two types of interrows. It led to a void ratio reduction of 37% and a reduction of the saturated hydraulic conductivity generating less infiltration than in rows. Grass-covered inter-rows were characterized by a macroporous mat root at the soil surface (0-3 cm) in the upper part of the underlying compacted volume. More infiltration was measured in inter-rows with grass cover than in chemically weed-controlled inter-rows. Modelling fairly reproduced contrast of water flow contrast in relation with soil structure for the first 25 centimetres. However, modelling was unable to reproduce flow in volume likely to be affected by preferential flow. Between 25 and 70 centimetres depth, soils containing numerous vine roots would be the seat of preferential flow pathways distributing water laterally from rows to inter-rows. Effectiveness of preferential pathways would increase with soil moisture and rainfall intensity.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Pierre CURMI (1), Marion CHATELIER (1,2) et Gérard TROUCHE (1)

(1) Établissement National d’Enseignement Supérieur Agronomique de Dijon, 26 bd du Dr Petitjean, 21079 Dijon cedex, France
(2) Université de Bourgogne, UMR INRA A 111 « Microbiologie et Géochimie des sols », Centre des Sciences de la Terre, 6 bd Gabriel, 21000 Dijon cedex, France

Contact the author

Keywords

hydraulics properties, tensiometer, resistivity, infiltration, preferential flow

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Different soil types and relief influence the quality of Merlot grapes in a relatively small area in the Vipava Valley (Slovenia) in relation to the vine water status

Besides location and microclimatic conditions, soil plays an important role in the quality of grapes and wine. Soil properties influence…

Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily

Pruned vine biomass exclusion from a clay loam vineyard soil – examining the impact on physical/chemical properties

The wine industry worldwide faces increasing challenges to achieve sustainable levels of carbon emission mitigation. This project seeks to establish the feasibility of harvesting winter pruned vineyard biomass (PVB) for potential use in carbon footprint reduction, through its use as a renewable biofuel for energy production. In order to make this recommendation, technical issues such as the potential environmental impact, chemical composition and fuel suitability, and logistical challenges of harvesting biomass needs to be understood to compare with the results from similar studies. Of particular interest is the role PVB plays as a carbon source in vineyard soils and what effect annual removal might have on soil carbon sequestration. A preliminary trial was established in the Waite Campus vineyard (University of Adelaide) to test current management strategies. Vines are grown in a Eutrophic, Red Dermosol clay loam soil with well managed midrow swards. A comparison was undertaken of mid-row treatments in two 0.25 Ha blocks (Shiraz and Semillon), including annual cultivation for seed bed preparation, the deliberate exclusion of PVB (25 years) and incorporation of PVB (13 years) at an average of 3.4 and 5.5 Mg/Ha-1 for Shiraz and Semillon respectively. In both 0-10cm and 10-30cm soil core sample depths, combined soil carbon % measures in the desired range of 1.80 to 3.50, were not significantly different between treatments or cultivars and yielded an estimated 42 Mg/ha-1 of sequestered soil carbon. Other key physical and chemical measures were likewise not significantly different between treatments. Preliminary results suggest that in a temperate zone vineyard, managed such as the one used in this study, there is no long term negative impact on soil carbon sequestration through removing PVB. This implies that growers could confidently harvest PVB for use in several end fates including as a bio fuel.

Innovative water status monitoring of white grape varieties with on-plant sensors

Context and Purpose. Climate change presents significant challenges to agricultural sustainability, particularly through the increasing frequency of drought and water scarcity.

Vertical temperature gradient in the canopy provides opportunities to adapt training system in a climate change context

Aims: The aims of this study were (1) to measure the vertical temperature gradient in the vine canopy in parcels with different vineyard floor management practices and (2) to analyze the factors influencing this gradient. The objective was to investigate whether the increase of trunk height could be an adaptation strategy to reduce air temperature in the bunch zone in a context of climate change.