Terroir 2006 banner
IVES 9 IVES Conference Series 9 The Soil Component of Terroir

The Soil Component of Terroir

Abstract

Evidence for a specific effect of soil mineral composition on wine character is largely anecdotal. However, soil potassium supply to the vine must be properly balanced between deficiency and excess for good fruit quality. Nitrogen supply interacts with soil water to affect vine vigour, yield and fruit quality. With irrigation, water availability in the top 40-60 cm of soil can be managed through regulated deficit irrigation, thereby subduing the mineralization of soil organic N and decreasing vine N uptake, with favourable effects on fruit quality. In dry land vineyards, water availability depends on climate and soil physical properties, the latter being beneficially modified by calcium. The effect of soil variation on terroir should be evaluated on a scale of metres rather than kilometers. High density real-time measurements of relevant soil properties enables digital soil mapping at very high resolutions. Thus, vineyards can be divided into small blocks with the same mesoclimate allowing site-specific soil management and cultural operations (precision viticulture).

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Robert WHITE, Lilanga BALACHANDRA, Robert EDIS and Deli CHEN

School of Resource Management, Faculty of Land and Food Resources, The University of Melbourne,
Parkville, Victoria 3010, Australia

Contact the author

Keywords

grapevines, precision viticulture, soil management, soil variability, terroir

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Color stabilization properties of oenological tannins

The use of oenological tannins is authorized for many years by the OIV and advised for color stabilization. For this reason, winemakers look for a better understanding of tannins/anthocyanins interactions to produce deeply colored wines with great color stability during aging.

Organic volatile compounds as suitable markers of grapevine response to defense elicitors in the vineyard

In greenhouse, emission of volatile organic compounds (VOC) by grapevine leaves has already been reported in response to the defence elicitor sulfated laminarin (PS3) [1]. In order to check that this response was not specific to PS3, experiments were conducted on Vitis cv Marselan plantlets with several other elicitors of different chemical structures: i.e. Bastid® (COS-OGA),

Gestión de la mitigación por las empresas vitivinícolas: combinar sostenibilidad y rentabilidad

The transition to a decarbonized economy requires companies to adopt mitigation measures. The wine sector is one of the most affected by climate change and, therefore, interested in its mitigation. The question is how this process develops. To address this, we build on a previous study [1], which identified different types of Spanish wineries based on their sustainability approach.

Measures to promote biodiversity in viticulture—how do socio-economic factors influence implementation?

Context and purpose. In Germany, vineyards are typically intensively managed monocultural systems shaped by low structural variability.

Grapevine yield-gap: identification of environmental limitations by soil and climate zoning in Languedoc-Roussillon region (south of France)

Grapevine yield has been historically overlooked, assuming a strong trade-off between grape yield and wine quality. At present, menaced by climate change, many vineyards in Southern France are far from the quality label threshold, becoming grapevine yield-gaps a major subject of concern. Although yield-gaps are well studied in arable crops, we know very little about grapevine yield-gaps. In the present study, we analysed the environmental component of grapevine yield-gaps linked to climate and soil resources in the Languedoc Roussillon. We used SAFRAN data and IGP Pays d’Oc wine yields from 2010 to 2018. We selected climate and soil indicators proving to have a significant effect on average wine yield-gaps at the municipality scale. The most significant factors of grapevine yield were the Soil Available Water Capacity; followed by the Huglin Index and the Climatic Dryness Index. The Days of Frost; the Soil pH; and the Very Hot Days were also significant. Then, we clustered geographical zones presenting similar indicators, facilitating the identification of resources yield-gaps. We discussed the number of zones with the experts of IGP Pays d’Oc label, obtaining 7 zones with similar limitations for grapevine yield. Finally, we analysed the main resources causing yield-gaps and the grapevine varieties planted on each zone. Mapping grapevine resource yield-gaps are the first stage for understanding grapevine yield-gaps at the regional scale.