Terroir 2006 banner
IVES 9 IVES Conference Series 9 The Soil Component of Terroir

The Soil Component of Terroir

Abstract

Evidence for a specific effect of soil mineral composition on wine character is largely anecdotal. However, soil potassium supply to the vine must be properly balanced between deficiency and excess for good fruit quality. Nitrogen supply interacts with soil water to affect vine vigour, yield and fruit quality. With irrigation, water availability in the top 40-60 cm of soil can be managed through regulated deficit irrigation, thereby subduing the mineralization of soil organic N and decreasing vine N uptake, with favourable effects on fruit quality. In dry land vineyards, water availability depends on climate and soil physical properties, the latter being beneficially modified by calcium. The effect of soil variation on terroir should be evaluated on a scale of metres rather than kilometers. High density real-time measurements of relevant soil properties enables digital soil mapping at very high resolutions. Thus, vineyards can be divided into small blocks with the same mesoclimate allowing site-specific soil management and cultural operations (precision viticulture).

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Robert WHITE, Lilanga BALACHANDRA, Robert EDIS and Deli CHEN

School of Resource Management, Faculty of Land and Food Resources, The University of Melbourne,
Parkville, Victoria 3010, Australia

Contact the author

Keywords

grapevines, precision viticulture, soil management, soil variability, terroir

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Influence of social interaction levels on panel effectiveness in developing wine sensory profiles using consensus method

The development of sensory profiles is crucial for quality control and innovation in the wine industry. If quantitative descriptive analysis is the most commonly used method for establishing sensory profiles due to its robustness, it presents significant limitations.

Bio-acidification of wines by Lachancea thermotolerans

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

A common problem in wineries is haze formation after bottling, mainly caused by unstable proteins present in white wine. The most used material to eliminate these proteins is bentonite.

Polysaccharides and glycerol production by non-Saccharomyces wine yeasts in mixed fermentation

A great variability in the amount of polysaccharides recovered at the end of fermentations carried out by pure cultures of 89 non-Saccharomyces yeasts was observed. The utilization of the best polysaccharides producers in mixed cultures with S. cerevisiae resulted in considerable increases in the final concentration of polysaccharides and showed a strain dependent effect on glycerol production as compared to pure culture of S. cerevisiae.

Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Port wine is a fortified wine exclusively produced in the Douro Appellation (Portugal) under very specific conditions resulting from natural and human factors. Its intrinsic aroma characteristics are modulated upon a network of factors, such as the terroir, varieties and winemaking procedures that include a wide set of steps, namely the fortification with grape spirit (ca. 77% v/v ethanol).