Terroir 2006 banner
IVES 9 IVES Conference Series 9 The Soil Component of Terroir

The Soil Component of Terroir

Abstract

Evidence for a specific effect of soil mineral composition on wine character is largely anecdotal. However, soil potassium supply to the vine must be properly balanced between deficiency and excess for good fruit quality. Nitrogen supply interacts with soil water to affect vine vigour, yield and fruit quality. With irrigation, water availability in the top 40-60 cm of soil can be managed through regulated deficit irrigation, thereby subduing the mineralization of soil organic N and decreasing vine N uptake, with favourable effects on fruit quality. In dry land vineyards, water availability depends on climate and soil physical properties, the latter being beneficially modified by calcium. The effect of soil variation on terroir should be evaluated on a scale of metres rather than kilometers. High density real-time measurements of relevant soil properties enables digital soil mapping at very high resolutions. Thus, vineyards can be divided into small blocks with the same mesoclimate allowing site-specific soil management and cultural operations (precision viticulture).

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Robert WHITE, Lilanga BALACHANDRA, Robert EDIS and Deli CHEN

School of Resource Management, Faculty of Land and Food Resources, The University of Melbourne,
Parkville, Victoria 3010, Australia

Contact the author

Keywords

grapevines, precision viticulture, soil management, soil variability, terroir

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Autochthonous yeasts: a microbiological tool to exalt the quality of the apulian sparkling wine

The selection, characterization, and recruitment of autochthonous yeast strains to drive the alcoholic fermentation process is a highly researched practice because it allows the differentiation of the organoleptic properties of wines, assuring process standardization, reducing fermentation times and improving the quality and safety of the final products [1, 2]. Sparkling wines are “special wines” obtained by secondary fermentation of the base wine. ​In the traditional method (Champenoise method), the re-fermentation takes place in the bottle after the addition to the base wine of the so-called tirage solution. This step, also known as prise de mousse, is followed by an aging period characterized by the release of compounds from the yeast cells that affect the organoleptic properties of the final product. The use of autochthonous yeasts as starter cultures for secondary fermentation is one of the recent innovations proposed to enhance and differentiate these wines’ sensory quality [3,4]. Apulia is the second Italian wine-producing region, and its productive chain is now going through a qualitative evolution by implementing the employment of innovative approaches to exalt the peculiar properties of regional wines.

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Profiling and evaluating wine lees by-products from various yeast strains against grapevine pathogens

Wine lees are the sediment that settles at the bottom of wine barrels, tanks, or bottles during the winemaking process and represent the second most significant by-product of wineries.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].