Terroir 2006 banner
IVES 9 IVES Conference Series 9 Viticultural characterisation of soils from triassic period at Beaumes-de-Venise (Côtes du Rhône, France)

Viticultural characterisation of soils from triassic period at Beaumes-de-Venise (Côtes du Rhône, France)

Abstract

Wineries of Beaumes-de-Venise area make their best red wines with grapes from the “Triassic terroir”. This « terroir » is characterized by soils from the Triassic period. These specific soils are complex and quite heterogeneous. They originate from an eventful geological history to keep in mind to understand soils geographical distribution. The aim of this work is to deep into the knowledge of Triassic period soils. The method of reference sectors has been an efficient one, after some adaptations to regional specificities.
This work allows to the creation of a practical brochure for winegrowers and technicians use. It includes: a simple key for determination of the principal kinds of Triassic soils; a detailed characterisation of these soils and technical and agronomical advices (grape varieties, rootstocks and cultural practices) adapted to every soil features.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Begoña RODRIGUEZ-LOVELLE (1), Pierre VITAL (1), Mélanie SIRE (2) and Francis FABRE (1)

(1) Syndicat Général des Vignerons Réunis des Côtes du Rhône
Service technique. Institut Rhodanien, 2260 route du Grès, 84100 Orange, France
(2) ENITA de Bordeaux, 1 cours du Général de Gaule, 33175 Gradignan, France

Contact the author

Keywords

soil, Triassic period, Côtes du Rhône, reference sectors method, agronomical advices

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Colloidal color stabilization in wine: A comparative study of Saccharomyces and non-Saccharomyces mannoproteins

Structure-function relationships between the polysaccharide part of S. cerevisiae Mannoprotein Pools (MPs) and their potential to interact with anthocyanins and Protein-Tannins aggregates was previously assessed [1,2].

Crowdsourced the assessment of wine rating: professional wine competition rating vs vivino rating

We evaluate wine ratings by comparing data from two crowdsourcing platforms – Vivino, which aggregates the opinions of a large number of wine lovers, and Global Wine Medal Rating, which aggregates the scores from more than 1030 international wine competitions since 2020.

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

Is the consumer ready for innovative fruit wines?

AIM: Wine consumption in the last fifteen years showed a decrease in Europe [1]. New alternatives of wines appeared on the market. Those beverages are obtained by blending wines and fruit juices or flavoring wines with artificial or natural aromas and have medium alcohol content (from 8 to 10.5%) [2]. Recently, an innovative fruit wine has been proposed obtained by co-fermenting grape must and kiwi juice [3] whose potential attractiveness to consumers should be exploited. However, differences in product acceptability and perception, as well as the individuals’ willingness to consume and pay could change in function of subjects socio-demographic characteristics. The target group selected is represented by young adults (18-35 years old) consumption groups.