Terroir 2006 banner
IVES 9 IVES Conference Series 9 New technologies to characterize spatial variability in viticulture

New technologies to characterize spatial variability in viticulture

Abstract

Measurements of parameters spatialy positionned, with on line sensors mounted on classical machinery or airborne imagery is no more a problem in viticulture. In a short time, high resolution data dedicated to the assessment of the vine characteristics, the soil, the harvest, etc. will become a reality. This information sources will allow the wine grower to have a spatial accurate knowledge of the vineyard and its variability. Such an accuracy in monitoring the production system was never achieved until now. This paper makes a brief overview of the tools and methods already released or under development to assess the vineyard variability of the main parameters. This work makes also an overview of the main references in vineyard variability. It presents the main results observed on yield, sugar, TTA, etc. within field variability. For each of these parameters clues on magnitude of variation and coefficient of variation observed at a within field scale are given. Assessing the within field variability can lead the wine grower to take advantage of this variability by adopting site specific management practices. In that case, information of the spatial structure of the variation is of importance since it gives an idea of how a site specific management is opportune on each field. This work will present the main results obtained in spatial structure assessment in viticulture (focusing on yield). Finally, one of the keypoint in viticulture is the assessment of the plant water restriction and its variability whether over the time or over the space. This work presents main experimental results dedicated to the assessment of the within field variability of the plant water status and its link with harvest quality.

DOI:

Publication date: January 11, 2022

Issue: Terroir 2006

Type: Article

Authors

B. TISSEYRE (1), J. TAYLOR (2) and OJEDA H. (3)

(1) UMR Itap, ENSA. Montpellier, bât. 21, 2 place Viala, 34060 Montpellier, France
(2) Australian Centre for Precision Agriculture, University of Sydney, Australia
(3) UMR SPO, INRA,station expérimentale de Pech Rouge, 11000 Gruissan, France

Contact the author

Keywords

grapevine, spatial variability, precision viticulture, temporal stability, water restriction

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Podcasts – Terroir Congress 2020

All about “Australian grapevine stories”

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Utility of leaf removal timing and irrigation amounts on grape berry flavonoids under climate change

Context and purpose of the study – The dormant and growing season temperatures in California USA have been increasing with more clear sky days. A consequence increasing temperatures and clear sky days is water deficit conditions. Viticulturists must determine appropriate balances of canopy management and irrigation budgeting to produce suitable yields without compromising berry chemistry. In response, a study designed to test the interactive effects of leaf removal timing and applied water amounts on Cabernet Sauvignon/110R in Napa Valley, CA.

Influence of maturity on grape tyrosinase activity

Enzymatic browning of grape must remains a major issue in winemaking, especially when grapes are affected by grey rot.