Terroir 2006 banner
IVES 9 IVES Conference Series 9 New technologies to characterize spatial variability in viticulture

New technologies to characterize spatial variability in viticulture

Abstract

Measurements of parameters spatialy positionned, with on line sensors mounted on classical machinery or airborne imagery is no more a problem in viticulture. In a short time, high resolution data dedicated to the assessment of the vine characteristics, the soil, the harvest, etc. will become a reality. This information sources will allow the wine grower to have a spatial accurate knowledge of the vineyard and its variability. Such an accuracy in monitoring the production system was never achieved until now. This paper makes a brief overview of the tools and methods already released or under development to assess the vineyard variability of the main parameters. This work makes also an overview of the main references in vineyard variability. It presents the main results observed on yield, sugar, TTA, etc. within field variability. For each of these parameters clues on magnitude of variation and coefficient of variation observed at a within field scale are given. Assessing the within field variability can lead the wine grower to take advantage of this variability by adopting site specific management practices. In that case, information of the spatial structure of the variation is of importance since it gives an idea of how a site specific management is opportune on each field. This work will present the main results obtained in spatial structure assessment in viticulture (focusing on yield). Finally, one of the keypoint in viticulture is the assessment of the plant water restriction and its variability whether over the time or over the space. This work presents main experimental results dedicated to the assessment of the within field variability of the plant water status and its link with harvest quality.

DOI:

Publication date: January 11, 2022

Issue: Terroir 2006

Type: Article

Authors

B. TISSEYRE (1), J. TAYLOR (2) and OJEDA H. (3)

(1) UMR Itap, ENSA. Montpellier, bât. 21, 2 place Viala, 34060 Montpellier, France
(2) Australian Centre for Precision Agriculture, University of Sydney, Australia
(3) UMR SPO, INRA,station expérimentale de Pech Rouge, 11000 Gruissan, France

Contact the author

Keywords

grapevine, spatial variability, precision viticulture, temporal stability, water restriction

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Identification of the agronomical and landscapes potentialities in “Côtes du Rhône” area (France)

“Côtes du Rhône”, like many other controlled appellation wine, represents high stakes in the economical, social cultural and historical domains. The scenery formed by vineyards reveals these cultural values. It offers by a pleasant and appealing environment for the inhabitants and the tourists. It is also a powerful marketing tool for the winemakers.

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

Drought caused by climate change has a dramatic incidence on the vineyard. Despite employing specific rootstocks tolerant to drought like 110 Richter, the vineyard continues to experience various losses, revealing the importance of the scion cultivar in the adaptation to drought stress. In this regard, Merlot, a widely cultivated grapevine, exhibited reduced drought tolerance compared to less cultivated varieties like Callet, a local cultivar originating from the Balearic Islands that demonstrated greater resilience to drought. Therefore, understanding the drought stress response in both cultivars and the cross-talk between scion and rootstock is key to unveiling possible differences that could affect to the adaptation to drought in vineyard.

Spectral discrimination between Vitis vinifera and labrusca by spectroradiometric techniques

Brazil is one of the few countries where vineyards of Vitis labrusca and Vitis vinifera coexist in the same geographical spaces, due to complex processes of territorial occupation by successive waves of European settlers.