Terroir 2006 banner
IVES 9 IVES Conference Series 9 New technologies to characterize spatial variability in viticulture

New technologies to characterize spatial variability in viticulture

Abstract

Measurements of parameters spatialy positionned, with on line sensors mounted on classical machinery or airborne imagery is no more a problem in viticulture. In a short time, high resolution data dedicated to the assessment of the vine characteristics, the soil, the harvest, etc. will become a reality. This information sources will allow the wine grower to have a spatial accurate knowledge of the vineyard and its variability. Such an accuracy in monitoring the production system was never achieved until now. This paper makes a brief overview of the tools and methods already released or under development to assess the vineyard variability of the main parameters. This work makes also an overview of the main references in vineyard variability. It presents the main results observed on yield, sugar, TTA, etc. within field variability. For each of these parameters clues on magnitude of variation and coefficient of variation observed at a within field scale are given. Assessing the within field variability can lead the wine grower to take advantage of this variability by adopting site specific management practices. In that case, information of the spatial structure of the variation is of importance since it gives an idea of how a site specific management is opportune on each field. This work will present the main results obtained in spatial structure assessment in viticulture (focusing on yield). Finally, one of the keypoint in viticulture is the assessment of the plant water restriction and its variability whether over the time or over the space. This work presents main experimental results dedicated to the assessment of the within field variability of the plant water status and its link with harvest quality.

DOI:

Publication date: January 11, 2022

Issue: Terroir 2006

Type: Article

Authors

B. TISSEYRE (1), J. TAYLOR (2) and OJEDA H. (3)

(1) UMR Itap, ENSA. Montpellier, bât. 21, 2 place Viala, 34060 Montpellier, France
(2) Australian Centre for Precision Agriculture, University of Sydney, Australia
(3) UMR SPO, INRA,station expérimentale de Pech Rouge, 11000 Gruissan, France

Contact the author

Keywords

grapevine, spatial variability, precision viticulture, temporal stability, water restriction

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Assessing and mapping vineyard water status variability using a miniaturized nir spectrophotometer from a moving vehicle

In the actual scenario of climate change, optimization of water usage is becoming critical in sustainable viticulture. Most of the current approaches to assess grapevine water status and drive irrigation scheduling are either destructive, time and labour consuming and monitor a small, limited number of plants. This work presents a novel methodology using a contactless, miniaturized, low-cost NIR spectrometer to monitor the vineyard water status variability from a moving vehicle, to provide reliable information towards precision irrigation.

Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

We performed a DC resistivity monitoring experiment during eight months in 2003. Low, medium and high resolution measurements have been carried out at various locations of a vineyard. General apparent resistivity mapping evidences the spatial variations of the summer drying of the subsurface.

Étude des relations sol-vigne sur le vignoble de Côte Rôtie

La topographie du vignoble de Côte Rôtie, la prédominance de la non culture ainsi que la structure très légère des sols amènent les vignerons à s’interroger sur l’entretien du sol, la conduite de la fertilisation de leurs parcelles ainsi que sur le développement racinaire de la vigne.

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.

Guard cell metabolism – A key for regulating drought resilience?

In view of increasing drought frequencies due to climate change, enhancing grapevine resilience to water scarcity has become vital for sustainable viticulture.