Terroir 2006 banner
IVES 9 IVES Conference Series 9 New technologies to characterize spatial variability in viticulture

New technologies to characterize spatial variability in viticulture


Measurements of parameters spatialy positionned, with on line sensors mounted on classical machinery or airborne imagery is no more a problem in viticulture. In a short time, high resolution data dedicated to the assessment of the vine characteristics, the soil, the harvest, etc. will become a reality. This information sources will allow the wine grower to have a spatial accurate knowledge of the vineyard and its variability. Such an accuracy in monitoring the production system was never achieved until now. This paper makes a brief overview of the tools and methods already released or under development to assess the vineyard variability of the main parameters. This work makes also an overview of the main references in vineyard variability. It presents the main results observed on yield, sugar, TTA, etc. within field variability. For each of these parameters clues on magnitude of variation and coefficient of variation observed at a within field scale are given. Assessing the within field variability can lead the wine grower to take advantage of this variability by adopting site specific management practices. In that case, information of the spatial structure of the variation is of importance since it gives an idea of how a site specific management is opportune on each field. This work will present the main results obtained in spatial structure assessment in viticulture (focusing on yield). Finally, one of the keypoint in viticulture is the assessment of the plant water restriction and its variability whether over the time or over the space. This work presents main experimental results dedicated to the assessment of the within field variability of the plant water status and its link with harvest quality.


Publication date: January 11, 2022

Issue: Terroir 2006

Type: Article


B. TISSEYRE (1), J. TAYLOR (2) and OJEDA H. (3)

(1) UMR Itap, ENSA. Montpellier, bât. 21, 2 place Viala, 34060 Montpellier, France
(2) Australian Centre for Precision Agriculture, University of Sydney, Australia
(3) UMR SPO, INRA,station expérimentale de Pech Rouge, 11000 Gruissan, France

Contact the author


grapevine, spatial variability, precision viticulture, temporal stability, water restriction


IVES Conference Series | Terroir 2006


Related articles…

Rapporti tra diverse tipologie di terreno e risposte produttive e qualitative delle uve Merlot e Carmenère nell’area DOC Piave

Da anni la ricerca viticola sta orientando le sue attenzioni verso lo studio della vocazionalità degli ecosistemi viticoli, perché fulcro della produttività della vite e qualità dei suoi frutti.

Main viticultural soils in Castilla – La Mancha (Spain)

Castilla-La Mancha is the biggest vineyard in the world. Once similar soils have been identified in Castilla-La Mancha (soil

La vinificación de las uvas aromáticas: Moscateles y Malvasías

Las uvas aromáticas se pueden dividir en dos clases, Moscateles y Malvasías, dependiendo del hecho de que el linalol o el geraniol, respectivamente, sean los alcoholes terpénicos monohidroxilados que

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.

The kinetics of grape aromatic precursors hydrolysis at three different temperatures

In neutral grapes, it is known that most aroma compounds are present as non-volatile