Terroir 2006 banner
IVES 9 IVES Conference Series 9 Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

Abstract

The « Condado de Huelva » Registered Appellation Origin Mark (RAOM) is located in the Province of Huelva, in the southwest of Andalucía (Spain), being limited by the Atlantic Ocean and the Province of Sevilla. « Zalema », a white high productive grapevine plant is its major cultivar. The predominant rootstocks used are « Rupestris du Lot », « Castel 196-17 », « Couderc 161-49 », Couderc 33-09 », « Richter 110 » and « Millardet 41-B ». Traditionally, « Zalema » cv. has been dedicated to the elaboration of amber, bouquet-flavoured wines and in the last years mainly to young, fruit-flavoured white table wines. The presence and distribution of Grapevine fanleaf virus (GFLV) and Xiphinema index and X. italiae, the main nematode-vectors of GFLV, were determined by ELISA and soil analysis, respectively. Samples were collected according to a stratified random model. The number and distribution of the samples were related to the size of each area (county) of the RAOM and dispersion of the results represented by the standard deviation (S.D.), being 2.500 and 210 the total vines and soil samples analysed in two years in the 16 counties considered. From the results, an erratic distribution of healthy plants was found, ranging from 37% (63% of infected plants) in the most attacked county to 87% of free-virus plants in the less affected. The average was close to 27%, considering the surface of vineyards and incidence in each county.

There were also high variations in the nematodes distribution, existing counties without presence of them and others with high number of populations. In average, a 6.2% of soil samples with X. index and 20.5% with X. italiae were detected. There was no relationship between the number of nematodes and the number of GLFV-infected plants in each county. Nevertheless, if the nematode free zones are not considered, the results indicate a small but appreciable relationship. The use of non-controlled GFLV-infected scions for grafting was considered as the most important way for virus transmission.The in vitro culture of apical meristems was a good method for the obtaining of free-virus plant material, reaching even a 100% of healthy plants and the non-infected plant material grew better in vitro than the infected one. When this free-GFLV plant material was used as scion for grafting in field, an increase of plant growth and production was obtained.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Carlos M. WEILAND (1), Fernando PÉREZ-CAMACHO (2), Manuel CANTOS (3), Guillermo PANEQUE (4) and Antonio TRONCOSO (3)

(1) Departamento CC. Agroforestales, University of Huelva 21819, La Rábida (Huelva) (Spain)
(2) ETSIA.M. University of Córdoba, avda. Menéndez Pidal, s/n, 14080 Córdoba (Spain)
(3) IRNAS – CSIC, avda. Reina Mercedes, s/n. P.O. Box 1052, 41080 Sevilla (Spain)
(4) Dpto. Cristalografía, Mineralogía y Química Agrícola, University of Sevilla (Spain)

Contact the author

Keywords

Xiphinema index, Xiphinema italiae, in vitro, Zalema

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Elementi in traccia e ultratraccia nell’uva: possibili applicazioni ai fini della tracciabilità geografica

Nel presente studio si è ricercata la possibilità di associare l’uva al territorio mediante parametri chimici indipendenti da variabili climatiche ed antropiche.

Effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine

In this video recording of the IVES science meeting 2023, Fernando Zamora (Department of biochemistry and biotechnology, Faculty of oenology, Universitat Rovira i Virgili, Spain) speaks about the effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine. This presentation is based on an original article accessible for free on OENO One.

Environmental influence on grape phenolic and aromatic compounds in a Nebbiolo selection (Vitis vinifera L.)

Nebbiolo (Vitis vinifera L.) is one of the most important wine red cultivar of North-west Italy. A better understanding of the complex relations among grape aromatic and phenolic maturity and environmental factors may strongly contribute to the improvement of the quality of Nebbiolo wines.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Reduced fungicide sprayings: A biodiversity boost?

Pesticides are considered one of the main causes for arthropod decline in agriculture which in turn may affect ecosystem services such as natural pest control and soil fertility.