Terroir 2006 banner
IVES 9 IVES Conference Series 9 Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

Abstract

The « Condado de Huelva » Registered Appellation Origin Mark (RAOM) is located in the Province of Huelva, in the southwest of Andalucía (Spain), being limited by the Atlantic Ocean and the Province of Sevilla. « Zalema », a white high productive grapevine plant is its major cultivar. The predominant rootstocks used are « Rupestris du Lot », « Castel 196-17 », « Couderc 161-49 », Couderc 33-09 », « Richter 110 » and « Millardet 41-B ». Traditionally, « Zalema » cv. has been dedicated to the elaboration of amber, bouquet-flavoured wines and in the last years mainly to young, fruit-flavoured white table wines. The presence and distribution of Grapevine fanleaf virus (GFLV) and Xiphinema index and X. italiae, the main nematode-vectors of GFLV, were determined by ELISA and soil analysis, respectively. Samples were collected according to a stratified random model. The number and distribution of the samples were related to the size of each area (county) of the RAOM and dispersion of the results represented by the standard deviation (S.D.), being 2.500 and 210 the total vines and soil samples analysed in two years in the 16 counties considered. From the results, an erratic distribution of healthy plants was found, ranging from 37% (63% of infected plants) in the most attacked county to 87% of free-virus plants in the less affected. The average was close to 27%, considering the surface of vineyards and incidence in each county.

There were also high variations in the nematodes distribution, existing counties without presence of them and others with high number of populations. In average, a 6.2% of soil samples with X. index and 20.5% with X. italiae were detected. There was no relationship between the number of nematodes and the number of GLFV-infected plants in each county. Nevertheless, if the nematode free zones are not considered, the results indicate a small but appreciable relationship. The use of non-controlled GFLV-infected scions for grafting was considered as the most important way for virus transmission.The in vitro culture of apical meristems was a good method for the obtaining of free-virus plant material, reaching even a 100% of healthy plants and the non-infected plant material grew better in vitro than the infected one. When this free-GFLV plant material was used as scion for grafting in field, an increase of plant growth and production was obtained.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Carlos M. WEILAND (1), Fernando PÉREZ-CAMACHO (2), Manuel CANTOS (3), Guillermo PANEQUE (4) and Antonio TRONCOSO (3)

(1) Departamento CC. Agroforestales, University of Huelva 21819, La Rábida (Huelva) (Spain)
(2) ETSIA.M. University of Córdoba, avda. Menéndez Pidal, s/n, 14080 Córdoba (Spain)
(3) IRNAS – CSIC, avda. Reina Mercedes, s/n. P.O. Box 1052, 41080 Sevilla (Spain)
(4) Dpto. Cristalografía, Mineralogía y Química Agrícola, University of Sevilla (Spain)

Contact the author

Keywords

Xiphinema index, Xiphinema italiae, in vitro, Zalema

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Isotope composition of wine as indicator of terroir spatial variability

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area

Développement de l’appareil végétatif et maturation du raisin sur quatre sols de Pomerol en 1995

The Pomerol vineyard, located 35 km east of Bordeaux, covers around 800 ha on the left bank of the Isle. There is a system of fluvial terraces with more or less coarse gravel and pebble spreading, resting on a Tertiary substratum ranging from the Middle to Upper Eocene to the Lower Oligocene (Dubreuilh, 1993). This interweaving of terraces of varying thickness results in a brutal superposition of differentiated materials which give rise to various types of soil. Several site studies in this sector of the Libounais show significant morphological and analytical differences from one point to another (Guilloux et al ., 1978; Duteau, 1982; Van Leeuwen et al.., 1989). The distribution of the soils of the Pomerol vineyard was studied and resulted in a cartography at 1/25000th (Merouge, 1995).

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves.

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces.

Enhancing grapevine transformation and regeneration: A novel approach using developmental regulators and BeYDV-mediated expression

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering crispr/cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate.