Terroir 2006 banner
IVES 9 IVES Conference Series 9 Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

Abstract

The « Condado de Huelva » Registered Appellation Origin Mark (RAOM) is located in the Province of Huelva, in the southwest of Andalucía (Spain), being limited by the Atlantic Ocean and the Province of Sevilla. « Zalema », a white high productive grapevine plant is its major cultivar. The predominant rootstocks used are « Rupestris du Lot », « Castel 196-17 », « Couderc 161-49 », Couderc 33-09 », « Richter 110 » and « Millardet 41-B ». Traditionally, « Zalema » cv. has been dedicated to the elaboration of amber, bouquet-flavoured wines and in the last years mainly to young, fruit-flavoured white table wines. The presence and distribution of Grapevine fanleaf virus (GFLV) and Xiphinema index and X. italiae, the main nematode-vectors of GFLV, were determined by ELISA and soil analysis, respectively. Samples were collected according to a stratified random model. The number and distribution of the samples were related to the size of each area (county) of the RAOM and dispersion of the results represented by the standard deviation (S.D.), being 2.500 and 210 the total vines and soil samples analysed in two years in the 16 counties considered. From the results, an erratic distribution of healthy plants was found, ranging from 37% (63% of infected plants) in the most attacked county to 87% of free-virus plants in the less affected. The average was close to 27%, considering the surface of vineyards and incidence in each county.

There were also high variations in the nematodes distribution, existing counties without presence of them and others with high number of populations. In average, a 6.2% of soil samples with X. index and 20.5% with X. italiae were detected. There was no relationship between the number of nematodes and the number of GLFV-infected plants in each county. Nevertheless, if the nematode free zones are not considered, the results indicate a small but appreciable relationship. The use of non-controlled GFLV-infected scions for grafting was considered as the most important way for virus transmission.The in vitro culture of apical meristems was a good method for the obtaining of free-virus plant material, reaching even a 100% of healthy plants and the non-infected plant material grew better in vitro than the infected one. When this free-GFLV plant material was used as scion for grafting in field, an increase of plant growth and production was obtained.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Carlos M. WEILAND (1), Fernando PÉREZ-CAMACHO (2), Manuel CANTOS (3), Guillermo PANEQUE (4) and Antonio TRONCOSO (3)

(1) Departamento CC. Agroforestales, University of Huelva 21819, La Rábida (Huelva) (Spain)
(2) ETSIA.M. University of Córdoba, avda. Menéndez Pidal, s/n, 14080 Córdoba (Spain)
(3) IRNAS – CSIC, avda. Reina Mercedes, s/n. P.O. Box 1052, 41080 Sevilla (Spain)
(4) Dpto. Cristalografía, Mineralogía y Química Agrícola, University of Sevilla (Spain)

Contact the author

Keywords

Xiphinema index, Xiphinema italiae, in vitro, Zalema

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Grapevine genotypes with potential for reducing the carbon footprint in the atmosphere and cultivation in a biological system

The concentration of CO2 in the atmosphere is increasing from year to year. Taking into account the calculations of the greenhouse gas inventory, it was found that approximately 70% of CO2 in the atmosphere is absorbed by vegetation (forests, agricultural land, etc.).

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

Impact of sample size on yield estimation in commercial vineyards

The accurate estimation of yield is a fundamental for suitable viticulture, playing a pivotal role in the planning of logistics, the allocation of resources and the formulation of commercial strategies.

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.