Terroir 2006 banner
IVES 9 IVES Conference Series 9 Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

Abstract

The « Condado de Huelva » Registered Appellation Origin Mark (RAOM) is located in the Province of Huelva, in the southwest of Andalucía (Spain), being limited by the Atlantic Ocean and the Province of Sevilla. « Zalema », a white high productive grapevine plant is its major cultivar. The predominant rootstocks used are « Rupestris du Lot », « Castel 196-17 », « Couderc 161-49 », Couderc 33-09 », « Richter 110 » and « Millardet 41-B ». Traditionally, « Zalema » cv. has been dedicated to the elaboration of amber, bouquet-flavoured wines and in the last years mainly to young, fruit-flavoured white table wines. The presence and distribution of Grapevine fanleaf virus (GFLV) and Xiphinema index and X. italiae, the main nematode-vectors of GFLV, were determined by ELISA and soil analysis, respectively. Samples were collected according to a stratified random model. The number and distribution of the samples were related to the size of each area (county) of the RAOM and dispersion of the results represented by the standard deviation (S.D.), being 2.500 and 210 the total vines and soil samples analysed in two years in the 16 counties considered. From the results, an erratic distribution of healthy plants was found, ranging from 37% (63% of infected plants) in the most attacked county to 87% of free-virus plants in the less affected. The average was close to 27%, considering the surface of vineyards and incidence in each county.

There were also high variations in the nematodes distribution, existing counties without presence of them and others with high number of populations. In average, a 6.2% of soil samples with X. index and 20.5% with X. italiae were detected. There was no relationship between the number of nematodes and the number of GLFV-infected plants in each county. Nevertheless, if the nematode free zones are not considered, the results indicate a small but appreciable relationship. The use of non-controlled GFLV-infected scions for grafting was considered as the most important way for virus transmission.The in vitro culture of apical meristems was a good method for the obtaining of free-virus plant material, reaching even a 100% of healthy plants and the non-infected plant material grew better in vitro than the infected one. When this free-GFLV plant material was used as scion for grafting in field, an increase of plant growth and production was obtained.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Carlos M. WEILAND (1), Fernando PÉREZ-CAMACHO (2), Manuel CANTOS (3), Guillermo PANEQUE (4) and Antonio TRONCOSO (3)

(1) Departamento CC. Agroforestales, University of Huelva 21819, La Rábida (Huelva) (Spain)
(2) ETSIA.M. University of Córdoba, avda. Menéndez Pidal, s/n, 14080 Córdoba (Spain)
(3) IRNAS – CSIC, avda. Reina Mercedes, s/n. P.O. Box 1052, 41080 Sevilla (Spain)
(4) Dpto. Cristalografía, Mineralogía y Química Agrícola, University of Sevilla (Spain)

Contact the author

Keywords

Xiphinema index, Xiphinema italiae, in vitro, Zalema

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Canopy microclimate vineyard variability in vineyards of the Lodi region of California, USA

Aim: The aim of this project was to evaluate the microclimatic effects on objective measures of fruit quality within different vigour classes of multiple vineyards and to compare the results across the Lodi region of California, USA.

Arbuscular mycorrhizal fungi as biomarkers of vineyard yield in Champagne

The vine is colonized by a multitude of micro-organisms (fungi, bacteria, oomycetes) mainly coming from the microbial reservoir constituted by the soil. These microorganisms have positive or negative effects on the vine (protection against pathogens, resistance to abiotic stress, nutrition, but also triggering of diseases) (Fournier, Pellan et al. 2022). In addition to these functional roles, they respond quickly to environmental changes (climate, cultural practices) which could make them good bioindicators of the functioning of the wine ecosystem.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.