Terroir 2006 banner
IVES 9 IVES Conference Series 9 Vintage influence on Grenache N, Syrah N and Mourvedre N in Côtes du Rhône (France)

Vintage influence on Grenache N, Syrah N and Mourvedre N in Côtes du Rhône (France)

Abstract

Vintage is part of « terroir ». The aim of this work is to study, through vine and berry parameters, the effect of vintage on the three major red grape varieties in Côtes du Rhône : Grenache N, Syrah N and Mourvedre N. We first characterized vintages 1997 to 2003, highlighting similar features in grape development across the different cultivars since 2001 only. Then we showed that vintage becomes the major effect only if vine vigour is stabilized. Indeed, there is a strong relationship between an excess of vigour and berry size on Grenache and Mourvedre, whereas fertility of Syrah is reduced when vigour is decreased. This work has to be continued by integrating meteorological data, to explore more precisely the effect of vintage on vine and grape development.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Pierre VITAL, Christian AGUT and Francis FABRE

Syndicat Général des Vignerons Réunis des Côtes du Rhône
Service technique. Institut Rhodanien. 2260 Rte du Grès. 84100 Orange, France

Contact the author

Keywords

Vintage, Grenache, Syrah, Mourvèdre, Côtes du Rhône

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Utility of leaf removal timing and irrigation amounts on grape berry flavonoids under climate change

Context and purpose of the study – The dormant and growing season temperatures in California USA have been increasing with more clear sky days. A consequence increasing temperatures and clear sky days is water deficit conditions. Viticulturists must determine appropriate balances of canopy management and irrigation budgeting to produce suitable yields without compromising berry chemistry. In response, a study designed to test the interactive effects of leaf removal timing and applied water amounts on Cabernet Sauvignon/110R in Napa Valley, CA.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

Zoning mountain landscapes for a valorisation of high identity products

Mountain agriculture is made difficult by the geomorphological complexity of the territory. This is especially true for viticulture: over the centuries the work of men in such a difficult environment

Quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR in the study of deuterium distribution in intracellular water and fermentation products of grape carbohydrates using ethyl alcohol as an example

The paper presents results that develop the results of studies carried out in 2022-2023 under the OIV grant on the topic of distribution of deuterium (2H(D)) in the intracellular water of grapes and wines, taking into account the impact of natural, climatic and technogenic factors using quantitative nuclear magnetic resonance spectroscopy (qNMR).

Above and below: soil moisture and soil temperature interact to alter grapevine water relations

The combined effect of soil moisture and soil temperature on grapevine physiology is gaining interest in the context of global warming.