Terroir 2006 banner
IVES 9 IVES Conference Series 9 H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages

H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages

Abstract

Differences in wine flavour proceed primarily from grape quality. Environmental factors determined by the climate, soil and training systems modify many grape and wine quality traits. Metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectra has been proved to be useful to study multifactorial effects of the vine environment on intricate grape quality traits. The capacity of this method to discriminate the environmental effects on wine has to be demonstrated. 1H-NMR spectra were made from wines produced with grapes of three cultivars and three soil types in two vintages. Principal component analysis applied on the NMR spectra data were not always able to separate satisfactorily wines from the 3 soil types. Conversely, partial least square analysis separated clearly the 3 soil types independently of the vintage and cultivar. By comparing the NMR signals that contribute to the 2 first axes of the PCA and PLS analyses, a significant soil effect on NMR signals in wines is reported. This profiling method will contribute to the qualification of the wine, in relation to its origin and the winemaking process strategy.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Giuliano ELIAS PEREIRA (1,3), Jean-Pierre GAUDILLERE (1), Cornelis van LEEUWEN (1), Ghislaine HILBERT (1), Mickaël MAUCOURT (2), Catherine DEBORDE (2), Annick MOING (2) and Dominique ROLIN (2)

(1) UMR Œnologie-Ampélologie, Équipe Écophysiologie et Agronomie viticole, INRA Université Bordeaux 2, B.P. 81, 33883 Villenave d’Ornon cedex, France
(2) UMR Physiologie et Biotechnologie Végétales, INRA, Universités Bordeaux 1 et 2, B.P. 81, 33883 Villenave d’Ornon cedex, France
(3) (present address) Embrapa Uva e Vinho/Semi-Árido, CP 23, 56302-970, Petrolina, PE, Brasil

Contact the author

Keywords

terroir, glycerol, proline, Cabernet-Sauvignon, Merlot, Cabernet franc

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Integrated approaches for the functional characterization of miRNAs in grapevine

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine.

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact.

A lower rate of grape berry transpiration delays ripening and reduces flavonoid content

Exposing berries to solar radiation improves most berry composition traits. Many of these effects have been linked to photomorphogenic mechanisms and berry temperature.

Evaluation of sap flow and trunk diameter measurements in grapevines using time series decomposition

Grapevines are very sensitive to weather conditions. Excessively hot and dry periods trigger the activation of survival mechanisms, such as reduction of crop transpiration and the redistribution of water. Monitoring these mechanisms is, therefore, essential to better understand the grapevine water dynamics and maximize water-use efficiency.

Composition and molar mass distribution of different must and wine colloids

A major problem for winemakers is the formation of proteinaceous haze after bottling. Although the exact mechanisms remain unclear, this haze is formed by unfolding and agglomeration of grape proteins, being additionally influenced by numerous further factors.