Terroir 2006 banner
IVES 9 IVES Conference Series 9 H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages

H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages

Abstract

Differences in wine flavour proceed primarily from grape quality. Environmental factors determined by the climate, soil and training systems modify many grape and wine quality traits. Metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectra has been proved to be useful to study multifactorial effects of the vine environment on intricate grape quality traits. The capacity of this method to discriminate the environmental effects on wine has to be demonstrated. 1H-NMR spectra were made from wines produced with grapes of three cultivars and three soil types in two vintages. Principal component analysis applied on the NMR spectra data were not always able to separate satisfactorily wines from the 3 soil types. Conversely, partial least square analysis separated clearly the 3 soil types independently of the vintage and cultivar. By comparing the NMR signals that contribute to the 2 first axes of the PCA and PLS analyses, a significant soil effect on NMR signals in wines is reported. This profiling method will contribute to the qualification of the wine, in relation to its origin and the winemaking process strategy.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Giuliano ELIAS PEREIRA (1,3), Jean-Pierre GAUDILLERE (1), Cornelis van LEEUWEN (1), Ghislaine HILBERT (1), Mickaël MAUCOURT (2), Catherine DEBORDE (2), Annick MOING (2) and Dominique ROLIN (2)

(1) UMR Œnologie-Ampélologie, Équipe Écophysiologie et Agronomie viticole, INRA Université Bordeaux 2, B.P. 81, 33883 Villenave d’Ornon cedex, France
(2) UMR Physiologie et Biotechnologie Végétales, INRA, Universités Bordeaux 1 et 2, B.P. 81, 33883 Villenave d’Ornon cedex, France
(3) (present address) Embrapa Uva e Vinho/Semi-Árido, CP 23, 56302-970, Petrolina, PE, Brasil

Contact the author

Keywords

terroir, glycerol, proline, Cabernet-Sauvignon, Merlot, Cabernet franc

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Unprecedented rainfall in northern Portugal

Aim: Climate is arguably one of the most important factors determining the quality of wine from any given grapevine variety. High rainfall during spring can promote growth of the vines but increases the risk of fungal disease, while vineyard operations can be disrupted, as machinery may be prevented from getting in the vineyard owing to muddy soils.

Oak wood influence on the organoleptic perception of red wine

Some wood substances such as ellagitannins (vescalagin, castalagin, grandinin, roburins (A, B, C, D, E)…) can be extracted during wine ageing in oak barrels. The level of these hydrolysable tannins in wine depends of the species and origin of oak wood as well as its treatment during barrel realization.