Terroir 2006 banner
IVES 9 IVES Conference Series 9 The sensory features of the landscapes

The sensory features of the landscapes

Abstract

When someone watches a hilly landscape, the image beauty creates emotions and frames of mind not easily forgettable, but sometimes man’s intervention by means of soil movement and reduction of the natural biodiversity can significantly modify the landscape and consequently the above-mentioned emotions. One speculates if sensory appreciation of a wine may be strongly affected by psychological factor: landscape beauty. Just before the beginning of the trial, an analysis of the territorial features (morphology, vineyard extension, biodiversity, etc.) was performed in order to well characterise the typical landscape of Conegliano and Valdobbiadene hills. Since 2004 sensory evaluations of Prosecco wines coming from the two above mentioned viticultural areas was carried out with the aim to evaluate how landscape emotionally influences wine appreciation. The results proved the important role of the frame of mind (created by the projected images) on wine perception: landscape becomes an added value for the wines. A change in the original morphology of the landscape will result in a different emotional acceptability, and also the wine quality perception will be affected. In this trial, both the chemical composition of the grapes (sugars and aroma compounds) and the sensory perception of the wines (olfactory notes) were shown to be significantly influenced by soil movement. There is a loss of vocation due to the soil disruption, and a comparison between natural and moved soils proved that there was a great difference in terms of microbial activity and root development probably due to the lack of organic matter.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Diego TOMASI (1), Paolo SIVILOTTI (1), Domenico LUCIANI (2) and Marzio POL (3)

(1) CRA-Istituto Sperimentale per la Viticoltura, Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
(2) Fondazione Benetton Studi Ricerche, Treviso, Italy
(3) Enologist, Treviso, Italy

Contact the author

Keywords

Landscapes, earth movement, root distribution, grape composition, wine sensory analysis

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Life cycle assessment (LCA) to move towards more environmentally friendly winegrowing

As six on the nine planetary boundaries have already been crossed, putting our safe life on Earth at risk (Rockström et al., 2024) and agriculture is significantly responsible for it (Campbell et al., 2017), viticulture, faces the challenge of reducing its environmental impacts through fundamental changes to its practices.

Extension to the Saumurois-Touraine area of an Anjou-originated method for the characterisation of the viticultural terroirs. (Loire Valley, France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation. Le modèle concerne des terrains issus principalement de roches mères métamorphiques et éruptives du Massif Armoricain. Cet outil de caractérisation des terroirs viticoles nécessite d’être adapté lorsqu’il s’agit d’ensembles géologiques très différents, en particulier sur sols d’apport et de roches mères tendres et poreuses du Bassin Parisien. Une meilleure compréhension de la réserve hydrique des sols apparaît être un critère important de l’interaction entre le milieu et la plante.