Terroir 2004 banner
IVES 9 IVES Conference Series 9 Study and valorization of vineyards “terroirs” of A.O.C. Cahors (Lot, France)

Study and valorization of vineyards “terroirs” of A.O.C. Cahors (Lot, France)

Abstract

In the current context of market competition and consumption evolution, it is necessary to produce wines of a genuine typicity. The Terroir represents an unique and irreproducible inheritance that can be valorized through the origin and the sensory characteristics of the wines.
Since 1989, the Expérimental Association of « la Ferme Départementale d’Anglars-Juillac » has led research and experimentation on vineyard terroirs, aimed at direct valorization for the winegrowers. The objective is to know (1) the wine-producing potentials of each terroir of the Cahors Appellation, for the principal vine grape cultivars of the Appellation: Malbec N or Cot N or Auxerrois N, (2) the vine behaviour on these terroirs and (3) to valorize this knowledge through technology, agronomy and enological procedures adapted to each terroir.
Cartography of the whole A.O.C. Cahors has been realized (22000ha). Nine terroirs have been identified according to the type of soil and the landscape situation: alluvial terraces of the Lot, “grèzes”, calcareous hillsides, high calcareous plateaus (eventually with marl), and red clays from sidérolithique formations. Agronomic and enological studies of a representative parcel of each terroir have been done since 1994. Pedological pits have also been done with physical and chemical analyses of each described horizon. Each year, maturity controls are carried out on these parcels; each is separately vinified with the same protocol. Wines are analyzed and tasted.
Results show that qualitative terroirs exist on alluvial terraces of the Lot, as well as on high calcareous plateaus. It is not the chemical nature (acid or calcareous) of the soil but the thickness of the soil which determines the quality of a terroir, in relation with the regularity of vine hydrous nutrition. For all that, some terroirs seem well adapted to produce vintage wines, whereas other terroirs seem more adapted to produce regional wines or wines for blending.
This study provides an agronomic and enological basis for advising wine-growers, in order to lead each terroir to its qualitative optimum: adaptation of the cultural practices, especially for new plantations (choice of the rootstock, soil management); adaptation of the method of vinification according to the terroir. The wine-grower has to take care of the terroir, the quality of the grape harvested and the wine. This study has led to a qualitative improvement of A.O.C. Cahors wines. The Cahors Appellation is now experiencing an infatuation for the most qualitative terroirs.
In the future, the start-up of the hierarchical system of the A.O.C. Cahors terroirs and the creation of vintage wines, will allow a large communication on wine quality and typicity, favorable to the whole Appellation Cahors wine business.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Francis Laffargue (1), Elisabeth Besnard (1) and Marc Garcia (2)

1) Association d’Expérimentation, Ferme Départementale, 46140 Anglars-Juillac, France
2) ENSAT, Centre de Viticulture-Œnologie de Midi-Pyrénées, Avenue de l’Agrobiopole, Auzeville-Tolosane, BP 107 F, 31320 Castanet-Tolosane Cedex, France

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.

Armenia: historical origin of domesticated grapevine

The Armenian highlands are located on the northern border of western asia and stretch up to the caucasus from the north. Throughout human history, country has played an important role in connecting the civilizations of europe and the near east. The recent large-scale study about the dual domestication origin and evolution of grapes approved that in the Armenian highlands human and grapevine stories are interlaced through centuries and roots of grapevine domestication are found deep in the pleistocene, ending 11.5 thousand years ago. Findings of this study confirmed that glacial episodes distinguish wild grapes into eastern and western ecotypes around 200-400 ka.

Vitamin content of grape musts and yeast nutrition: A review

The management of yeast nutrition is an essential approach for a better control over wine fermentation process. Most of the researches on this subject in the last decades focused on nitrogen nutrition. However, vitamins, while being key compounds for yeast metabolism as co-factors for numerous enzymatic activities, were left mostly unexplored.

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).