Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of soil water holding capacity and plant water relations in zone/terroir expression

The role of soil water holding capacity and plant water relations in zone/terroir expression

Abstract

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit composition even within small units of climatic zones, and much less so over larger climatic trans-sects. The influence of water status on grape composition has been studied intensively for many years, yet indirect effects caused by changes in plant water status have been largely neglected. For example, vineyard sites with limited water supply will be more prone to early leaf drop causing substantial changes in the light environment of the fruit, which in itself will change fruit temperature. Additionally, there is almost certainly a different link between plant water status and fruit and wine composition for red and white cultivars and within each respective group between varieties of different geographic origin. Another unresolved problem is the coupling of soil to plant water status. Many plant water status indicators such as stem, or midday or pre-dawn (ΨPD) leaf water potential are difficult to link to quantitative soil water data. We have recently started to use the concept of total transpirable soil water (TTSW) and the fraction thereof (FTSW), originally proposed for herbaceous plants, to evaluate the coupling between soil water availability and plant water status measurements for contrasting vineyard sites. Even for soil water holding capacities over the root profiles between 380 and 100 L/m2, and a TTSW varying from 50 to 175 L/m2, respectively, we found a single common relationship between ΨPD and FTSW for all vineyards, irrespective of water extraction profiles and canopy systems (Gruber and Schultz 2004 in press). This relationship has also been proven stable across different wine regions in Europe. This system may provide a platform to better link quality parameters to plant and soil water status. Some recent results also suggest that indirect effects of changes in water supply may be more important than previously thought for fruit composition. These effects seem not restricted to changes in canopy microclimate or co-limiting factors such as nitrogen, but seem to extend to substances influencing micronutrient metabolism of yeasts, which may alter aromatic expression. It is clear and has been proven many times that water relations are important in quality formation and in the expression of terroir characters, yet it is still difficult to provide conclusive linkages between all the involved parameters.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

H. R. Schultz (1,2), Bernd Gruber (1)

(1) Institut für Weinbau und Rebenzüchtung, Forschungsanstalt Geisenheim, Germany
(2) Fachbereich Weinbau und Getränketechnologie, Fachhochschule Wiesbaden, von Lade Str. 1, D-65366 Geisenheim, Germany

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Seed phenolics oxidation: development of a new ripening index 

During ripening seed tannins evolve, as demonstrated by the taste and color changes. In this work we tried to develop an objective, easy and fast index, useful for winemakers. In this direction we propose two different spectrophotometric indexes, one related to the molecular structure and tannin subunits linkages, and the other related to the antioxidant properties. Especially the second one gave very interesting and unexpected results.

Ugni blanc berry and wine composition impacted by thirteen rootstocks

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2].

Chemical composition of press and free-run wines from three vintages and Bordeaux grape varieties. A comprehensive analysis

Press wines play a crucial role in red winemaking, representing up to 15% of the final blend [1]. Optimizing their value is essential both economically and for maintaining wine identity, especially given evolving climatic and societal challenges. However, little recent research exists on their composition.