Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of soil water holding capacity and plant water relations in zone/terroir expression

The role of soil water holding capacity and plant water relations in zone/terroir expression

Abstract

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit composition even within small units of climatic zones, and much less so over larger climatic trans-sects. The influence of water status on grape composition has been studied intensively for many years, yet indirect effects caused by changes in plant water status have been largely neglected. For example, vineyard sites with limited water supply will be more prone to early leaf drop causing substantial changes in the light environment of the fruit, which in itself will change fruit temperature. Additionally, there is almost certainly a different link between plant water status and fruit and wine composition for red and white cultivars and within each respective group between varieties of different geographic origin. Another unresolved problem is the coupling of soil to plant water status. Many plant water status indicators such as stem, or midday or pre-dawn (ΨPD) leaf water potential are difficult to link to quantitative soil water data. We have recently started to use the concept of total transpirable soil water (TTSW) and the fraction thereof (FTSW), originally proposed for herbaceous plants, to evaluate the coupling between soil water availability and plant water status measurements for contrasting vineyard sites. Even for soil water holding capacities over the root profiles between 380 and 100 L/m2, and a TTSW varying from 50 to 175 L/m2, respectively, we found a single common relationship between ΨPD and FTSW for all vineyards, irrespective of water extraction profiles and canopy systems (Gruber and Schultz 2004 in press). This relationship has also been proven stable across different wine regions in Europe. This system may provide a platform to better link quality parameters to plant and soil water status. Some recent results also suggest that indirect effects of changes in water supply may be more important than previously thought for fruit composition. These effects seem not restricted to changes in canopy microclimate or co-limiting factors such as nitrogen, but seem to extend to substances influencing micronutrient metabolism of yeasts, which may alter aromatic expression. It is clear and has been proven many times that water relations are important in quality formation and in the expression of terroir characters, yet it is still difficult to provide conclusive linkages between all the involved parameters.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

H. R. Schultz (1,2), Bernd Gruber (1)

(1) Institut für Weinbau und Rebenzüchtung, Forschungsanstalt Geisenheim, Germany
(2) Fachbereich Weinbau und Getränketechnologie, Fachhochschule Wiesbaden, von Lade Str. 1, D-65366 Geisenheim, Germany

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Epigenetics: an innovative lever for grapevine breeding in times of climate changes

Climate change results in erratic weather conditions, which may lead for many crops including grapevine, to a reduced production and products of lower quality. Concerning grapevine, climate change results in shorter growing seasons and dates for budbreak, flowering and fruit maturity occur earlier in many regions. It also leads to an increase of various pests and diseases, as well as the vectors responsible for disease distribution.

Viticultural parameters and enological performance of six Merlot clones in two contrasting vintages

Vitis vinifera L. and other Vitis have high genetic variations for cultivars or varieties. Many countries carried out strong efforts creating new clones of varieties, mainly focusing on plants free of viruses and other grapevine diseases, but also on different agronomical and enological characteristics of the plants. The aim of this study was to evaluate six clones of Merlot in the traditional viticulture of southeastern Brazil, focusing on distinct characteristics of yield, enological potential of grapes and wine typicality, in order to improve wine quality.

Impact of soil-applied and foliar-applied nitrogen on grape and wine composition

Foliar application of urea may be an efficient way to alter grape and wine composition without increasing vine vigor. However, we know little about the impact of this practice on phenolic compounds and yeast assimilable nitrogen (YAN). Adequate YAN is required for an efficient and complete fermentation, while phenolics are particularly important for the sensory profile of red wines. The goal of this study is to test the impact of foliar urea application at veraison, compared to the traditional soil-applied nitrogen fertilization early in the season, on Syrah berry and wine composition in field conditions.

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role. Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application. We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.

Vintage by vine interactions most strongly influence Pinot noir grape and wine composition in New Zealand

Vine genetics, fruit maturity, region and vineyard are perceived as factors that strongly influence Pinot noir grape and wine composition. Our study aims to understand the relationship between grape (and ultimately wine) composition and the physical appearance and performance characteristics of a vine (i.e. vine ideotype). Our experimental approach controlled these variables by