Terroir 2004 banner
IVES 9 IVES Conference Series 9 The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

Abstract

The monitoring of the number of micro-orgranisms in wine is crucial for the wine producer. Traditional counting methods include microscopic enumeration and plating on selective media, which measures the culturability of the cells. The use of epifluorescence microscopy is, however, a method, which can measure both culturability and viability in wine. This method distinguishes between live and dead cells. Research showed that little difference existed between plating and epifluorescence numbers to enumerate lactic acid bacteria in wine. However, a difference exists between these two methods to distinguish between acetic acid bacteria numbers in wine. Plating counting numbers were lower than plate numbers for Acetobacter pasteurianus in wine under anaerobic conditions. This difference was, however, negated by the addition of oxygen to the wine. SO2 additions lowered the culturability of A. pasteurianus at dosages higher than 0.35mg/L molecular SO2, but higher dosages were required to lower epifluorescence intensity, which is an indication of viability. Brettanomyces bruxellensis culturability was inhibited at lower dosages, but total cell numbers according to epifluorescence microscopy were affected at higher molecular SO2 dosages. Epifluorescence microscopy and plating also showed that B. bruxellensis was drastically affected after 120 min after molecular SO2 addition and it’s culturability after only 30 min. An exposure time of 5 min to molecular SO2 reduced the cell’s viability drastically and 45 min completely inhibiting the viability after two days. The bonded form of sulphur dioxide did not affect both micro-organisms. Epifluorescence microscopy can thus be used as a quick alternative to assess micro-organisms numbers and culturability in wine. This technique has both advantages and disadvantages over traditional enumeration methods, which will also be discussed.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

W.J. du Toit (1), I.S. Pretorius (1,2) and A. Lonvaud-Funel (3)

(1) Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Victoria Street, ZA 7600 Stellenbosch, South Africa
(2)The Australian Wine Research Institute, Waite Road, Urrbrae, SA 5064 Adealide, Australia
(3) Faculté d’Oenologie, 351, Cours de la Libération, 33405 Talence, France

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Il piano regolatore delle città’ del vino: aspetti urbanistici, economici e turistici

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

Enological potential of autochtonous grape cultivars from Castilla y León (Spain) to elaborate sparkling wines: polyphenolic and biogenic amines and amino acid composition of base wines

In white wines, Verdejo wine stands out because of its high content in total amino acids. The total content in biogenic amines was low in all wines analyzed and putrescine was the predominant biogenic amine.

Timing of leaf removal effects on vitis vinifera L. Cv. Grenache differed on two contrasting seasons

Warming trends over the winegrowing regions lead to an advance of grapevine phenology, diminution of yield and increased sugar content and must pH with a lower polyphenol content, especially anthocyanins. Canopy management practices are applied to control the source sink balance and improve the cluster microclimate to enhance berry composition. We hyphothesized that an early leaf removal might promote a delayed ripening through severe defoliation after fruitset; whereas, a late leaf removal at mid-ripening would reduce sugar accumulation.

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.