Terroir 1996 banner
IVES 9 IVES Conference Series 9 Influence of the unité de terroir base on the typicity of winesin the AOC Priorat in Tarragona

Influence of the unité de terroir base on the typicity of winesin the AOC Priorat in Tarragona

Abstract

[English version below]

L’AOC Priorat, située derrière les montagnes du pré littoral de Tarragone, se caractérise par un climat méditerranéen avec une tendance à la continentalité et très peu de précipitation pendant le cycle végétatif. Les sols sont secs, pauvres et caillouteux, formés par des schistes. Au cours des années 2000 et 2001, une étude de l’influence du terroir sur la typicité des vins du Priorat a été réalisée en prenant comme référence trois cépages cultivés dans différentes parceIles pour mesurer l’effet du terroir et du mésoclimat sur la qualité des vins: Grenache noir x sol de schistes (situé à Bellmunt B) et Grenache x sol tertiaire avec des carbonates (Vilella baixa VB ); Carignan x sol de schistes (VB et Porrera P) et Cabernet-Sauvignon x sol de schistes (B) et Cabernet-Sauvignon x terrasses alluviales (VB). Il a été analysé l’évolution de la maturité, le rendement, la composition chimique des raisins et les paramètres de la couleur des vins. La vendange la plus précoce fut localisée en B, suivi de VB et P; les raisins atteignent un degré de maturité similaire sauf dans le cas de P. Le Carignan issu de vieilles vignes a présenté le rendement le plus faible tandis que le Grenache et le Cabernet montrent des valeurs plus élevées et différentes selon le millésime: elles augmentent en 2000 par rapport à 2001. Le Grenache dans tous les types sols donne un degré alcoolique plus élevé. Le Cabernet a présenté une concentration en tanins supérieure dans les deux sols, schistes et alluvions, avec quelques différences selon l’année. Les teneurs en anthocyanes ainsi que les valeurs d’intensité colorante sont similaires pour les vins de Carignan et Cabernet. De plus, pour des terroirs identiques, les vins de Carignan issus du mésoclimat VB, résultent les plus riches en anthocyanes et les plus colorés. La sècheresse des sols et le mésoclimat de la région a un effet important sur la composition des vins.

The Priorat AOC, which is situated behind the coastal mountain range of Tarragona, is characterised by a Mediterranean climate that tends towards continentality and has very little precipitation during the vegetation cycle. The soil is poor quality, dry and pebbly, and made up of schist. During 2000 and 2001, we evaluated the following parameters: the evolution of maturity, the yield, the chemical composition of the grapes and the colour of the wines. To measure how terroir and mesoclimate affect the quality of the wines, we studied three varieties grown in several plots: red Grenache in schist soil of Bellmunt B; Grenache in tertiary soil with carbonates in Vilella Baixa VB; Carignan in schist soil in VB and Porrera P; Cabernet Sauvignon in schist soil in B; and Cabernet Sauvignon in alluvial terraces in VB. The earliest harvest was in B, followed by VB and P. All grapes except those in P acquired a similar degree of maturity. Carignan from old vines had the lowest yield for each year. The yield values for Grenache and Cabernet were higher in 2000 than in 2001. The alcoholic content of wine from Grenache was the highest in all types of soil. For Cabernet, the concentration of tannins was higher in both soils, schist and alluvial. Anthocyanin content and total polyphenol index (IPT) were similar in Carignan et Cabernet wines. The Carignan wines produced in the VB mesoclimate were richer in anthocyanin and had a more intense colour than in P. These results show that the dryness of the terroir and mesoclimat has an important effect on the wine composition.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

NADAL, M., MATEOS, A., ALSINA, X., CeRTA 

Dept Bioquimica i Biotecnologia, Facultat d’Enologia de Tarragona, URV, Espagne

Contact the author

Keywords

terroir, millésime, anthocyanes, tanins, rendement, qualité du vin, Priorat
terroir, millésime, anthocyanins, tanins, yield, wine quality, Priorat

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Electrochemical diversity of italian white wines

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.

New insights on thiol precursors catabolism by yeast during wine fermentation: identification of the N-Acetyl-L-Cysteine conjugate

Understanding the catabolism of thiol precursors is essential for understanding the revelation of varietal thiols in wine. For many years, knowledge of these precursors has been limited to the S-conjugates of glutathione, cysteine (Cys3SH) and the dipeptides g-GluCys and CysGly, without being able to explain the full origin of 3-sulfanylhexan-1-ol (3SH) in wines

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.