Terroir 1996 banner
IVES 9 IVES Conference Series 9 Methodology and zoning of A.O.C. natural soils. Example of “Pic Saint-Loup”

Methodology and zoning of A.O.C. natural soils. Example of “Pic Saint-Loup”

Abstract

[English version below]

Les travaux menés, dans le cadre du programme départemental pour la connaissance et la valorisation des terroirs viticoles, sur l’aire A.O.C. Coteaux du Languedoc / Pic Saint-Loup ont permis d’appliquer à l’échelle d’une Appellation d’Origine Contrôlée (13 communes), une méthodologie d’étude axée sur les aspects sol/climat/topographie qui concourent à l’identification des terroirs naturels, facteurs de typicité des vins. Dans un premier temps, un «diagnostic» de l’ensemble des critères du milieu naturel a été réalisé. Après avoir défini le cadre géologique, une prospection agro-pédologique au 1/10.000ème a permis de cartographier les différentes unités de sol ainsi que leurs positions topographiques. Les conditions climatiques sont également précisées d’un point de vue statistique (stations météo au sein de l’aire et stations limitrophes).

Dans un second temps, il était intéressant d’associer plus étroitement ces caractéristiques agro­environnementales à la culture de la vigne et à l’élaboration d’un vin typique. On approche ainsi au plus près de la notion de «terroir». Dans ce cadre, une singularité bioclimatique du Pic Saint-Loup a été identifiée sur la base de 3 indices viticoles corrélés à des caractéristiques intrinsèques et spécifiques des vins du Pic Saint-Loup. Les différentes unités de terroir naturel ont été cartographiées (typologie du sol, avec une estimation de la disponibilité en eau, associée au bilan radiatif) et décrites sous les différents aspects qui font leurs identités.

The works led, within the local program for the knowledge and the valorization of the wine soils, on the area A.O.C. Coteaux du Languedoc / Pic Saint-Loup allowed to apply on the scale of a registrated appellation origin (13 municipalities), a methodology of study centered on aspects ground/climate/topography which contribute to the identification of natural soils, factors of typical wines. At first, a «diagnosis » of ail the criteria of the natural environment was realized. Having definite the geologic frame, an agro-pedological prospecting to the 1/10.000th allowed mapping the various unities of ground as well as their topographic positions. The climatic conditions are also clarified by a statistical point of view (meteorological stations within the area and bordering stations).

In a second time, it was interesting to associate more strictly these agro-environmental characteristics to the culture of the vineyard and to the elaboration of a typical wine. One approaches so in closer the notion of “soil”. In this frame, a bioclimatic peculiarity of the Pic Saint Loup was identified on the basis of 3 wine indicators correlated in intrinsic and specific characteristics of wines of Pic Saint Loup. The various units of natural soil were mapped (typology of ground, with an estimation of the availability in water, associated to the radiative assessment) and described under the various aspects which make their identities.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Jean-Paul STORAÏ (1), Jean-Luc TONDUT (2)

(1) Conseil général de l’Hérault – 1000 rue d’Alco – F. 34087 Montpellier cedex 4
(2) Association Climatologique de l’Hérault – 85 avenue d’Assas – F 34000 Montpellier

Keywords

méthodologie, terroir naturel, sol, climat, viticulture
methodology, natural soil, ground, climate, vine growing(2) Association Climatologique de l’Hérault – 85 avenue d’Assas – F 34000 Montpellier

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Impact of changing climatic factors on physiological and vegetative growth

Scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Illuminating vineyard management: Elevating operational efficiency through advanced sensing and data analytics

In this video recording of the IVES science meeting 2024, Luca Brillante (California State University, Fresno, USA) speaks about vineyard management, advanced sensing and data analytics. This presentation is based on an original article accessible for free on OENO One.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

The wine microbial consortium: a real terroir characteristic

Yeast, bacteria, species and strains play a key role in the winemaking process by producing metabolites which determine the sensorial qualities of wine. Therefore microbial population numeration, species identification and strains discrimination from berry surface at harvest to storage in bottle are fundamental.

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.