Terroir 1996 banner
IVES 9 IVES Conference Series 9 “Garrigues”, part of the mediterranean vine terroirs

“Garrigues”, part of the mediterranean vine terroirs

Abstract

[English version below]

Les paysages viticoles méditerranéens présentent une originalité qui ne se retrouve nulle part ailleurs : ils associent des garrigues très odoriférantes à des parcelles de vignes souvent qualitatives. La connaissance empirique des vins du Languedoc par leurs dégustateurs a conduit la Chambre d’Agriculture de l’Hérault à supposer que les arômes de la garrigue environnante peuvent se retrouver dans les vins (arômes de ciste, de genévrier, … ) Grâce à la collaboration d’une cave coopérative héraultaise, des essais ont été mis en place pour vérifier cette hypothèse. Ils comportent une première partie expérimentale, débutée en 2000, basée sur la comparaison d’échantillons de vins de Grenache, provenant de mini­ récoltes (50 kg) de parcelles très contrastées de par leur environnement de garrigue. La seconde partie des essais a débuté en 2001 et consiste en une sélection parcellaire au terroir de parcelles de grenache qualitatives entourées de garrigues et entourées de vignes (5 ha par lot environ.) Chaque lot est vinifié séparément par la cave coopérative. Les premiers résultats de dégustation sont très encourageants. Ils montrent que les spécificités de l’environnement naturel des vignes méditerranéennes pourront probablement être valorisées à terme par l’élaboration de vins originaux et difficilement imitables sur le marché.

The mediterranean viticultural landscapes are made of original patterns of qualitative vineyards alterning with odorous garrigues. Some connoisseurs of the Languedoc wines noted typical aromas of garrigue plants in the wines made from the most isolated vineyards. The Hérault Chamber of Agriculture decided to study whether these assumptions can be validated or not, in order to valorize the regional typicity of these wines. Two experiments were made on the vineyard of a partner wine coop. The first one, started in 2000, compares two samples of grenache wines made from vinifications of about 50 kg of grapes, each plot being located in contrasted places (one bordered by garrigues and one by vines). The second one started in 2001 and consists in the wine- making from a selection of about 10 ha of qualitative vines of grenache, 5 ha among garrigues and 5 ha among other vines. The first winetastings are very promising. They show that one must consider the wild environment as a whole part of the vine terroir definition, on the understanding that the potentiality of a terroir can only be expressed by vines technically perfect.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

William TRAMBOUZE (1), Jean-Pierre ARGILLIER (2), Nathalie GOMA-FORTIN (1)

(1) Chambre d’agriculture de l’Hérault, BP 83, allée du Géreral Montagne, 34120 Pézenas
(2) Chambre d’agriculture de l’Hérault, Maison des agriculteurs, Mas de Saporta, 34970 Lattes

Contact the author

Keywords

terroir viticole, garrigue, sélection parcellaire, typicité du vin
vine terroir, garrigue, vineyard selection, wine typicity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Soil mineral nitrogen dynamics in cover-cropped irrigated vineyards with contrasting soil textures

Context and purpose of the study. Cover cropping in vineyards supports grape yield, quality, and soil health.

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

Know thy enemy: oxygen or storage temperature?

It is well known that high oxygen levels and high ageing temperatures are detrimental to white wine’s composition and ageing capacity. However, these results, though valuable

The impact of selected odorant combinations in wine oxidative aroma and their interactive role on the olfactory perception

It is widely known the impact that oxidation has on wine sensory degradation and eventually, in the shortening of its longevity.

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.