Terroir 1996 banner
IVES 9 IVES Conference Series 9 “Garrigues”, part of the mediterranean vine terroirs

“Garrigues”, part of the mediterranean vine terroirs

Abstract

[English version below]

Les paysages viticoles méditerranéens présentent une originalité qui ne se retrouve nulle part ailleurs : ils associent des garrigues très odoriférantes à des parcelles de vignes souvent qualitatives. La connaissance empirique des vins du Languedoc par leurs dégustateurs a conduit la Chambre d’Agriculture de l’Hérault à supposer que les arômes de la garrigue environnante peuvent se retrouver dans les vins (arômes de ciste, de genévrier, … ) Grâce à la collaboration d’une cave coopérative héraultaise, des essais ont été mis en place pour vérifier cette hypothèse. Ils comportent une première partie expérimentale, débutée en 2000, basée sur la comparaison d’échantillons de vins de Grenache, provenant de mini­ récoltes (50 kg) de parcelles très contrastées de par leur environnement de garrigue. La seconde partie des essais a débuté en 2001 et consiste en une sélection parcellaire au terroir de parcelles de grenache qualitatives entourées de garrigues et entourées de vignes (5 ha par lot environ.) Chaque lot est vinifié séparément par la cave coopérative. Les premiers résultats de dégustation sont très encourageants. Ils montrent que les spécificités de l’environnement naturel des vignes méditerranéennes pourront probablement être valorisées à terme par l’élaboration de vins originaux et difficilement imitables sur le marché.

The mediterranean viticultural landscapes are made of original patterns of qualitative vineyards alterning with odorous garrigues. Some connoisseurs of the Languedoc wines noted typical aromas of garrigue plants in the wines made from the most isolated vineyards. The Hérault Chamber of Agriculture decided to study whether these assumptions can be validated or not, in order to valorize the regional typicity of these wines. Two experiments were made on the vineyard of a partner wine coop. The first one, started in 2000, compares two samples of grenache wines made from vinifications of about 50 kg of grapes, each plot being located in contrasted places (one bordered by garrigues and one by vines). The second one started in 2001 and consists in the wine- making from a selection of about 10 ha of qualitative vines of grenache, 5 ha among garrigues and 5 ha among other vines. The first winetastings are very promising. They show that one must consider the wild environment as a whole part of the vine terroir definition, on the understanding that the potentiality of a terroir can only be expressed by vines technically perfect.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

William TRAMBOUZE (1), Jean-Pierre ARGILLIER (2), Nathalie GOMA-FORTIN (1)

(1) Chambre d’agriculture de l’Hérault, BP 83, allée du Géreral Montagne, 34120 Pézenas
(2) Chambre d’agriculture de l’Hérault, Maison des agriculteurs, Mas de Saporta, 34970 Lattes

Contact the author

Keywords

terroir viticole, garrigue, sélection parcellaire, typicité du vin
vine terroir, garrigue, vineyard selection, wine typicity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Modelling leaf water potential from physiological and meteorological variables – A machine learning approach

Viticulture is a key economic sector in the mediterranean region. However, climate change is affecting global viticulture, increasing the frequency of heatwaves and drought events.

New breeding frontiers: application of the CRISPR-cas9 system in grapevine (V. vinifera L.) and improvements in plant regeneration

Nowadays, many policies are being adopted for direct agriculture towards more sustainable approaches. To continue to maintain a high production using fewer fertilizers, pesticides and water resources, agronomic techniques must be combined with biotechnological approaches. In grapevine, the breeding programs are restricted by the fact that it has a highly heterozygous genome, therefore, if on the one hand, we try to improve the characteristics, on the other hand it is necessary to preserve the original genome of the varieties. CRISPR-cas9 system is one of the smartest tools to carry out highly precise genetic modifications leaving the genetic background unchanged.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

Designing and managing a sustainable vineyard in a climate change scenario

Extension of the growing season, compression of the annual growth cycle and higher frequency and severity of weather extreme events are consistent features of global warming. While mitigation of factors causing global warming is necessary in the medium-long term, wine growers need “ready to go” adaptation practices to counteract negative effects bound to climate change. This must be done in a sustainably way, meaning that remunerative yield, desired grape quality, low production cost and environment friendly solutions must be effectively merged. In this work, we will review contribution given over the last two decades prioritizing issues related to scion and rootstock choice, changes in vineyard floor management, new perception related to the use of irrigation in vineyards, adaptation practices aimed at decompress maturity, solutions to counteract or minimize damages due to late frost and sunburn and, lastly, some hints on how precision viticulture can help with all of this.