Terroir 1996 banner
IVES 9 IVES Conference Series 9 Analyse de la perception du terroir et de sa valorisation par les viticulteurs de l’Anjou

Analyse de la perception du terroir et de sa valorisation par les viticulteurs de l’Anjou

Abstract

An integrated terroir characterization is currently realized in the French northern vineyard: “Anjou”. The concept of Basic Terroir Unit (B.T.U.) and its associated ground model “Rock, Alteration, Alterite” are used in this characterization. This work is coupled to a viticultural survey, based on parcels. These two approaches allow an analysis of the degree of perception of terroir and its valorization by vine growers. This analysis is realized at two scales: the ground model “Rock, Alteration, Alterite” applied in the whole study area and the B. T. U. for the both main geological systems: the metagrauwacke of the brioverian period and the green to grey sandstone schist of the ordovician-devonian period.
At the ground model scale, the vine growers have well differentiated the three environments by mesoclimatic (temperature of air, risk of frost), pedoclimatic (temperature and humidity of soil) and pedologic criteria. They have perceived also influences of the environment type on the behavior of the vine and integrated them in their viticultural and oenological practices. The analysis at B.T.U. scale, confirms the pertinence of the ground model “Rock, Alteration, Alterite” on the perception of pedoclimatic and pedologic characteristics and an important influence of the geological system on the mesoclimate of the parcel and on the vine behavior.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

LYDIE THÉLIER-HUCHÉ (1), E. JOURDREN (2), R. MORLAT (2)

(1) SAGAH, unité mixte INRA-INH, BP 57, 49071 Beaucouzé Cedex, France
(2) INRA, Unité de Recherches sur la Vigne et le Vin, BP 57, 49071 Beaucouzé Cedex, France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Corvina and Corvinone grape berries grown in different areas and their aptitude to postharvest dehydration

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown grafted in most of the world largely because of Phylloxera. Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important means of adaptation to environmental conditions if we want to conserve the typical features of the currently used scion genotypes. To aid this adaptation, we can exploit the large diversity of rootstocks used worldwide. To fully explore this existing rootstock diversity, this work benefits from the unique GreffAdapt vineyard, in which four scion genotypes were studied onto 55 commercial rootstocks in three blocks. The aim of this study was to characterise rootstock regulation of scion mineral status and how it relates to scion development.

Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

High resolution soil maps (scale : 1/3000) were created for seven of the most prestigious red wine producing estates in Bordeaux, covering in total approximately 400 ha.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.