terclim by ICS banner
IVES 9 IVES Conference Series 9 Local adaptation tools to ensure the viticultural sustainability in a changing climate

Local adaptation tools to ensure the viticultural sustainability in a changing climate

Abstract

Over the next century, the projected changes in regional climates are expected to have important consequences on wine production. They vary from short-term impacts on wine quality and style, to long-term issues such as varietal suitability and the economic sustainability of wine growing regions. To contextualize the possible temporal and spatial climate change impacts, this study first assessed the past and expected (RCP 4.5 and RCP 8.5) viticultural potential of 24 vineyards sites representative of the middle Loire Valley, namely sites with a weakly, moderately and strongly weathered bedrock having various water holding capacities. Simple terrain tools were then applied to illustrate the likely trends in possible wine quality and style for these 24 sites. While wine quality is shaped by natural features as soil properties, winegrowers’ perennial and annual decision-making inevitably play also an important role. Using a water balance model available for the 24 sites, the effect of different soil management practices on vine performance as well as wine quality and style were evaluated. To validate this applied approach using terrain tools, the final part of the study looked at support precision tools, namely vegetation indices derived from satellite imagery. These indices allow to monitor and estimate the vine water status of the different sites and therefore the delineation of viticultural zones with similar features. As a global changing climate denotes an increase in uncertainty, both in time and over space, these local adaptation tools allow winegrowers to better understand the past and expected viticultural potentialities of their vineyards. These tools should also enhance the resilience of winegrowers as they adopt no-regret strategies that are place specific.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Etienne Neethling1, Cécile Coulon-Leroy1, Etienne Goulet2,3 and Francois Gallet4

1ESA, USC 1422 INRA-GRAPPE, Ecole Supérieure d’Agricultures, Angers, France
2IFV, Institut Français de la Vigne et du Vin, Beaucouzé, France
3InterLoire, Interprofessions des Vins du Val de Loire, Tours, France
4Scanopy, Quincy, France

Contact the author

Keywords

climate change, adaptation tools, middle Loire Valley, conceptual model, wine identity

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

New Insights into Wine Color Analysis: A Comparison of Analytical Methods and their Correlation with Sensory Perception

wo spectrophotometric methods are recommended by the Organisation Internationale de la vigne et du vin (OIV). The first is the method after Glories, were the absorbances at 420 nm, 520 nm and 620 nm are measured (OIV 2006a).

Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.