terclim by ICS banner
IVES 9 IVES Conference Series 9 Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

Abstract

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Lira Souza Gonzaga1, Lukas Danner2, Keren Bindon3, John Gledhill4, Annette James1, Cassandra Collins1,7, Marcos Bonada5, Paul Petrie5,6, and Susan Bastian1,7

1School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide, Australia 
2CSIRO, Werribee, Australia 
3The Australian Wine Research Institute, Adelaide, Australia 
4WIC Winemaking Services, Adelaide, Australia 
5South Australian Research and Development Institute, Adelaide, Australia 
6The University of New South Wales, Sydney New South Wales, Australia 
7ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, Adelaide, Australia 

Contact the author

Keywords

regionality, clustering analysis, descriptive analysis, typicity, red wine

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Water status, nitrogen status and leaf area/ crop ratio effect on aromatic potential of vitis viniferaberries : example of Sauvignon blanc

Les effets de l’état hydrique et de l’alimentation en azote sur le potentiel aromatique des raisins de Sauvignon blanc ont été mesurés sur des vignobles du Bordelais. Les déficits hydriques ont été caractérisés par le potentiel tige déterminé en milieu de journée ΨTmin)­. L’alimentation en azote a été étudiée à partir d’une zone carencée en azote. Une part de cette zone a été supplémentée avec de l’azote minéral.

Characterization of Cabernet Sauvignon from Maipo valley (Chile) using fluorescence measurement

Viral diseases are a significant cause of both decreased grape quality and vineyard production. Important agents include grapevine leafroll-associated virus (glravs) and grapevine rupestris stem pitting-associated virus (grspav). However, conducting phytosanitary analysis of vineyards for viruses on-site is challenging, and molecular testing is generally expensive.

Management of varietal thiols in white and rosé wines using biotechnical tools

The present study evaluates the effect of prefermentative maceration enzymes and yeast autolysate on the concentration of conjugated precursors and volatile thiols, respectively.Sauvignon blanc and Merlot grapes underwent skin-contact maceration with or without pectolytic enzymes, for the production of white and rosé wines

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Climatic potential to produce grapes for wine-making in the tropical north region of Minas Gerais State, Brazil

The tropical north region of Minas Gerais State is one of the least developed of Brazil and viticulture could be an alternative to develop its agriculture zone. The objective of this work was to evaluate the wine grape production climatic potential of that region.