IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 High-power ultrasound for improving chromatic characteristics in wines. Does a varietal effect exist?

High-power ultrasound for improving chromatic characteristics in wines. Does a varietal effect exist?

Abstract

The use of high-power ultrasound (US) during the winemaking process has been extensively studied at laboratory scale in order to demonstrate its possible use to improve the extraction of compounds of interest. However, studies on semi-industrial and industrial scale are needed to confirm this positive effect, since the International Organization of Vine and Wine approved its industrial use in 2019 [1]. On the other hand, numerous studies on the characterization of grape varieties have shown some differences in their physical and chemical characteristics [2], and these may affect the outcome of the ultrasound treatment. Thus, our work focuses on the chromatic study of wines made from three different varieties (Monastrell, Cabernet Sauvignon and Syrah), to determine whether the use of US at a semi-industrial level facilitate the extraction of compounds of interest from the different varieties.Thereby, Monastrell, Syrah and Cabernet Sauvignon grapes were vinified. Four pilot scale trials were carried out for each variety: In two of them, ultrasound treatment was not applied in order to be used as controls (C). For the other two elaborations, the destemmed and crushed grape was subjected to ultrasound treatment (US) using a semi-industrial scale high power ultrasound equipment at a sonication frequency of 30kHz and a flow rate of 400 kg/h. Sonication was applied after destemming-crushing of the grapes for subsequent maceration. One of the control trials along with one of the US trials underwent a 3-day maceration, while the remaining two trials underwent a 7-day maceration of must-wine contact with the solid parts of the grapes. Physicochemical and chromatic parameters, as well as phenolic concentration and composition were analyzed by spectrophotometry and high-performance liquid chromatography respectively at the time of bottling.The results showed large differences between varieties. Wines obtained by sonicated grape of Syrah and Cabernet Sauvignon varieties showed greater color intensity and concentration of the different phenolic compounds analyzed both with 3 or 7 days of skin maceration. Moreover, those wines made from sonicated grapes and 3 days of skin maceration present similar chromatic characteristics of those wines made from control grapes and 7 days of maceration, which indicates that ultrasounds used on a semi-industrial scale can be of great interest in order to reduce maceration time in wineries, thus increasing their production capacity.Different behavior was observed in Monastrell wines, where no positive effect was observed in wines made from sonicated grapes and 3 days of maceration although wines obtained from Monastrell sonicated musts and 7 days of skin maceration showed a higher concentration of polymerized stable compounds and tannins than their respective controls, which would be of interest to improve the long-term stability of these wines. The possible reasons behind these differences would be discussed.

References

[1] OIV. (2019). Resolution OIV-OENO 616-2019. Paris, France: OIV.
[2] Ortega-Regules, A., Ros-García, J. M., Bautista-Ortín, A. B., López-Roca, J. M., & Gómez-Plaza, E. (2007). European Food Research and Technology, 227(1), 223–231.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pérez-Porras Paula1, Bautista-Ortín Ana Belén1, Jurado Ricardo2 and Gómez-Plaza Encarna1

1Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia
2Agrovin

Contact the author

Keywords

Ultrasound, Chromatics, Polyphenols, Maceration, Grape varieties

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

Genetic diversity of Oenococcus oeni strains isolated from Yinchuan wine region in the East of Helan Mountain, China

Aim: This study aimed to isolate Oenococcus oeni in red wines from Yinchuan wine region in the East of Helan Mountain, China, and analysis their genetic diversity.

Methods and Results: Oenococcus oeni strains were isolated from Cabernet Sauvignon and Cabernet Gernischt wines of four

Zoning influence in chromatic parameters in Monastrell grape

Zoning analysis determine homogeneous areas principally from the point of view of the medium, giving as a result a map which cartographic units synthesize the relations between the edaphic factors; morphological factors of the soil and climatic factors

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).