IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phytochemical composition of Artemisia absinthium L.

Phytochemical composition of Artemisia absinthium L.

Abstract

Absinthe is historically described as a distilled, highly alcoholic beverage. It is an anise-flavoured spirit derived from botanicals, including the flowers and leaves of Artemisia absinthium L. (“grand wormwood”), together with green anise, sweet fennel, and other medicinal and culinary herbs.This study contributes to the process of domestication of Artemisia absinthium L. by going deeper into the understanding of its floral biology and its phenological, morphological and chemical variability. Ten wormwood accessions were described and compared, particularly to help in the selection of populations that are interesting for distillation and adapted to the Val-de-Travers’s soil and climate conditions. Phenological observations were focused on blooming stages (C0-C7), especially on stage C5 which is the harvest stage. Morphological observations were focused on relevant agronomic features that help distinguish the various accessions to facilitate the selection process.
The chemical composition of those ten wormwood accessions is discussed through several angles of approach. The evaluation of the rate in essential oil was made by steam distillation and quantification of the oil layer with the aim of observing the variations of the accessions within the framework of description and the selection process. The concentration of thujone was determined by the GC-¬MS method and by the TLC method. An organoleptic analysis has established the profile of each accession based on ten descriptors. The results achieved reflect an important phenological, morphological and chemical variability inside and between the accession.
The rate in essential oil ranges from 0.35% to 1.06%, and the variability of their colour lead to think that their chemical composition is very different. The results of the analysis on the concentration of thujone show great variability, and it is difficult to draw conclusions about the role of the genome and of the soil and climate factors in its production.
The phenological observations show big differences in the conditions for vernalisation needed for the flower initiation. They allow also to highlight a difference in the precocity of the accessions that bloomed. Finally, the experiment on the floral biology of wormwood. showed that its principal breeding system is cross-¬fertilization. This present study aimed at taking part in the domestication process of Artemisia absinthium L., and in the selection of an ecotype adapted to the conditions of the Val-de-Travers with the view to revalue its local production.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bach Benoit1, Cleroux Marilyn1, Chappuis Charles1, Rebenaque Pierrick1, Deneulin Pascale1, Berthet Annabelle2, Vermeulen Hendrick2 and Delabays Nicolas2

1Changins, Viticulture and Oenology
2HEPIA, HES-SO University of Applied Sciences and Arts Western Switzerland

Contact the author

Keywords

Artemisia absinthium; Thujone; essential oils; GC-MS; TLC

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The fundamental role of pH in the anthocyanins chemical behavior and in their extractability during winemaking

The chemical behavior of anthocyanins is considerably affected even by slight pH variations with impor-tant implications for the winemaking as well as for the wine conservation

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

When considering the application of a systemic approach to assess the intrinsic complexity of agricultural production, the following question immediately arises

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

Big data analysis of pesticides from the vine to the winery

Of biocontrol products and resistant grape varieties, synthetic pesticides are still widely used to control fungal diseases and protect vines from potential damage caused by pests. The use of pesticides is strictly regulated, and their use can sometimes lead to transfer from the grapes to the must and then into the wine. The study of pesticide residues in grapes and wines is commonly carried out by wine producers in order, among other things, to optimize treatment routes, check that products comply with regulations, and ultimately guarantee the food safety of the wine.