IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of press fractioning on current and phenolic compositions of Pinot noir and Pinot meunier wines

Impact of press fractioning on current and phenolic compositions of Pinot noir and Pinot meunier wines

Abstract

In the Champagne’s region, a complete press cycle is a series of pressure increases (squeezes) and decreases (returns). After alcoholic fermentation, the two wines (the “cuvee” and the “tailles”) obtained from grape juice fractions exhibit strong differences for numerous characteristics. Nevertheless, there is no study of the impact of the press cycle, followed after each pressure increase (22-28 steps), on wine colour, current analyses and phenolic composition. So, the aim of this study (vintage 2020) was to investigate the composition changes of Pinot noir and Pinot meunier wines, produced from 22-28 grape juices isolated for each complete pressing cycle. The studied parameters were: colour (L*a*b*), pH, TA, malic and tartaric acids, alcohol, a-NH2, Ca2+ and K+, as well as anthocyanins (peonidin and malvidin), phenolic acids (protocatechuic acid, caftaric acid, cis-coutaric acid, trans-coutaric acid, fertaric acid, GRP) and flavanols (catechin and epicatechin). Previously published studies on wine characteristics obtained with juice fractions were based on 4-5 samples per pressing, i.e. one sample from each of the 4-5 squeezes. Most of the parameters showed fully mathematically modelable evolutions, with polynomial curves of order 2 (Vrigneau et al., 2019). When we study the wines from the musts taken after each change in pressure of 200 mBars, i.e. 22 to 28 samples for the entire pressing cycle, we observe that there is in fact a relative stability of the parameters throughout the squeeze and that the most marked changes are essentially observed after a stage of depressurisation and pomace reworking. These observations, never published to our knowledge, show the interest of juice separation after a significant change in grape juice quality instead of juice separation based solely on volumetric rules. These results lead us to reconsider how to separate the “Cuvée” and the “Tailles”. For catechins/epicatechins and GRP, the concentrations increase considerably at the beginning of each squeeze before decreasing, once the juices that have undergone the oxidative shock linked to the decompaction of the pomace are extracted. Other compounds such as protocatechuic or cis-coutaric acids increase throughout the pressing process, in a rather regular way. Finally, compounds such as trans-coutaric and caftatir acids show maximum levels well before the end of pressing. We can therefore see that the content and composition of the phenolic compounds evolve quite differently from those observed in the usual oenological analyses.
As a conclusion, this study brings a greater understanding of Pinot noir and Pinot meunier wine on their phenolic compositions and colour changes all along the press cycle. These results could be a good tool for winemakers to decide how to separate the grape juice
fractions during the pressing cycle to produce different styles of wines with different sensory qualities and aging potential.

References

Vrigneau C., Salmon T., Soufyani Y., Robillard B., Bécard B., Liu P-H., Heredia Mira F. J., Trosset J-Y., Marchal R. Impact of press fractioning on Pinot noir and Pinot meunier grape juice and wine compositions and colour. 11th International symposium of Enology (Œno2019) – 11th edition of In Vino Analytica Scientia symposium (IVAS 2019), June 25-28, 2019, Bordeaux, France.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Marchal Richard1, Vrigneau Céline2, Salmon Thomas1, Robillard Bertrand2 and Jourdes Michaël3

1University of Reims – Laboratory of Oenology, University of Haute-Alsace
2Institut Oenologique de Champagne, Epernay, France
3UMR Œnology (OENO), UMR 1366, ISVV, Université de Bordeaux-INRAE-Bordeaux INP, F33882 Villenave d’Ornon, France

Contact the author

Keywords

Press fractioning, wine, phenolic compounds, sparkling base wine, colour

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The role of soil water holding capacity and plant water relations in zone/terroir expression

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit

Effect of different winemaking practices on chemical composition, aroma profile and sensory perception of ribolla gialla sparkling wines

This study aims at evaluating the effects of different refermentation methods (Martinotti/Charmat vs. Classic) on the chemical composition, aroma profile and sensory characteristics of Ribolla Gialla sparkling wines; furthermore, certain winemaking practices (skin contact and use of pectolytic enzymes) were investigated considering the extraction of varietal aromas and aroma precursors. METHODS: Sparkling wines were produced at pilot-plant scale. Concerning refermentation methods, traditional Martinotti (MB – 30 days length), extended Martinotti (ML) with 4 months of aging on lees and Classic method (CL) with 11 months of aging on lees were compared; in a second trial, skin contact (MM), enzyme addition on must also subjected to maceration (ME), and enzyme addition on base wine (VE) were evaluated. All experimental trials were performed in triplicate. Basic chemical composition, varietal (terpenes and C13-norisoprenoids in free and bound form) and non-varietal aroma compounds were evaluated by LLE-GCMS analysis; finally, sensory analysis was also performed, by descriptive testing.

The concept of terroir: what place for microbiota?

Microbes play key roles on crop nutrient availability via biogeochemical cycles, rhizosphere interactions with roots as well as on plant growth and health. Recent advances in technologies, such as High Throughput Sequencing Techniques, allowed to gain deeper insight on the structure of bacterial and fungal communities associated with soil, rhizosphere and plant phyllosphere. Over the past 10 years, numerous scientific studies have been carried out on the microbial component of the vineyard. Whether the soil or grape compartments have been taken into account, many studies agree on the evidence of regional delineations of microbial communities, that may contribute to regional wine characteristics and typicity. Some authors proposed the term “microbial terroir” including “yeast terroir” for grapes to describe the connection between microbial biogeography and regional wine characteristics. Many factors are involved in terroir including climate, soil, cultivar and human practices as well as their interactions. Studies considering “microbial terroir” greatly contributed to improve our knowledge on factors that shape the vineyard microbial structure and diversity. However, the potential impact of “microbial terroir” on wine composition has yet not received strong scientific evidence and many questions remain to be addressed, related to the functional characterization of the microbial community and its impact on plant physiology and grape composition, the origins and interannual stability of vineyard microbiota, as well as their impact on wine sensorial attributes. The presentation will give an overview on the role of microbiota as a terroir component and will highlight future perspectives and challenges on this key subject for the wine industry.

Heat-stress responses regulated via a MYB24-MYC2 complex

Throughout the growing season, grapevine frequently encounters environmental challenges associated with heat and light radiation stress, especially during the ripening stage, thereby constraining the yield and quality of berries. MYB24 has been previously proposed to control light responses during late fruit ripening stages, and it has been found to require the co-factor MYC2. We have generated transcriptomic data from grapevine leaves transiently co-transformed with MYB24 and MYC2. Differential expression analysis revealed 179 up-regulated genes (URGs). Considering tissue specificity, where MYB24 is specifically and highly expressed in flowers and late-ripening berries, the expression of these URGs was explored using a previously published Berry Development Atlas gathering berry development data of cv. ‘Pinot Noir’ and ‘Cabernet Sauvignon’ in different vintages.

Does wine expertise influence semantic categorization of wine odors?

Aromatic characterization is a key issue to enhance wines knowledge. While several studies argue the importance of wine expertise in the ability of performing odor-related sensory tasks, there is still little attention paid to the influence of expertise on the semantic representation of wine odors.