IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Comparison between the volatile chemical profile of two different blends for PDO “Valpolicella Superiore”

Comparison between the volatile chemical profile of two different blends for PDO “Valpolicella Superiore”

Abstract

Valpolicella is a famous wine producing region located in the north of Verona close to Garda lake and owes its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. Nowadays the production of another PDO, Valpolicella Superiore is gaining more attention by the consumers, increasing the interest of the wineries to improve the quality of this wines. All the Valpolicella wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.Traditionally, Valpolicella product regulation required the blend to have a greater proportion (equal to …) of Corvina grape, from 2019 it changed allowing new blend compositions. For this reason, studying the volatile chemical profiles of different Valpolicella blends to support wine makers in the choices of the winery represents a field of great interest.The study aimed to evaluate the volatile chemical and sensory composition of two different blends, one “traditional” (70% Corvina, 30% Rondinella) and one “experimental” (60% Corvinone, 20% Corvina, 20% Rondinella).The grapes were supplied by six wineries in Valpolicella, four of which provided both blends, whereas for two companies were produced only traditional wines. Winemaking was performed under standardized conditions. Free volatile compounds as well as glycosidic precursors were analysed with gas chromatography mass spectrometry (GC-MS) techniques coupled with SPE and SPME extractions. Fermentation kinetics were found to be influenced by the different composition of the blends.We found many significant difference in volatile chemical composition among the two blends. This study found that Corvina-based wines have a higher concentration of terpenoids than Corvinone-based wine, conversely experimental blend wines, showed  a higher concentration of norisoprenoids. Interestingly multivariate analysis of the volatile compounds showed higher influence of the terroir compared to blend influence. This was reasonable because 40% of the grapes in the blends are the same and the remaining 60% varies. Moreover this result gives indications about the importance of the origin of the grapes and of the terroir of Valpolicella. 

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cristanelli Giacomo1, Luzzini Giovanni1, Slaghenaufi Davide1 and Ugliano Maurizio1

1Department of Biotechnology, University of Verona

Contact the author

Keywords

Red wine aroma, Valpolicella, Varietal identity, Terroir, Protected Designation of Origin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

The climate is the environmental factor that contributes with greater weight in the variability of the yield and the composition of the grape, therefore, it is key in the determination of the typicity of the product. Of the environmental factors, the evolution of water availability conditions, among other things, the biochemical evolution of the compounds of the grape and the type of wine to be elaborated. An integrating parameter of the hydric state of the plant is the carbon isotopic composition (δ13C). This indicator is a useful parameter to characterize the water status during the maturation period and estimate the transpiration efficiency or water use efficiency (EUA) in the vine.

Actual challenges and the need to produce alternative products from red grapes rich in phenols and antioxidants

The global consumption of wine has undergone significant changes after several years of covid-19, which was the beginning of a global crisis of the current century. This pushed some people to start looking for comfort and security as they felt that the world around them was losing these benefits. In most cases, this has led to them to idea of rethinking their lives in an attempt to live better or continuing to stay true to their habits and lifestyles despite the pressure of changes. Alcohol in any form is a part of these reactions, leading to increased consumption in the early stages of a crisis, particularly in relation to anxiety.

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.