IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Comparison between the volatile chemical profile of two different blends for PDO “Valpolicella Superiore”

Comparison between the volatile chemical profile of two different blends for PDO “Valpolicella Superiore”

Abstract

Valpolicella is a famous wine producing region located in the north of Verona close to Garda lake and owes its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. Nowadays the production of another PDO, Valpolicella Superiore is gaining more attention by the consumers, increasing the interest of the wineries to improve the quality of this wines. All the Valpolicella wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.Traditionally, Valpolicella product regulation required the blend to have a greater proportion (equal to …) of Corvina grape, from 2019 it changed allowing new blend compositions. For this reason, studying the volatile chemical profiles of different Valpolicella blends to support wine makers in the choices of the winery represents a field of great interest.The study aimed to evaluate the volatile chemical and sensory composition of two different blends, one “traditional” (70% Corvina, 30% Rondinella) and one “experimental” (60% Corvinone, 20% Corvina, 20% Rondinella).The grapes were supplied by six wineries in Valpolicella, four of which provided both blends, whereas for two companies were produced only traditional wines. Winemaking was performed under standardized conditions. Free volatile compounds as well as glycosidic precursors were analysed with gas chromatography mass spectrometry (GC-MS) techniques coupled with SPE and SPME extractions. Fermentation kinetics were found to be influenced by the different composition of the blends.We found many significant difference in volatile chemical composition among the two blends. This study found that Corvina-based wines have a higher concentration of terpenoids than Corvinone-based wine, conversely experimental blend wines, showed  a higher concentration of norisoprenoids. Interestingly multivariate analysis of the volatile compounds showed higher influence of the terroir compared to blend influence. This was reasonable because 40% of the grapes in the blends are the same and the remaining 60% varies. Moreover this result gives indications about the importance of the origin of the grapes and of the terroir of Valpolicella. 

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cristanelli Giacomo1, Luzzini Giovanni1, Slaghenaufi Davide1 and Ugliano Maurizio1

1Department of Biotechnology, University of Verona

Contact the author

Keywords

Red wine aroma, Valpolicella, Varietal identity, Terroir, Protected Designation of Origin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Mapping of canopy features in commercial vineyards using machine vision

Vineyard canopy features such canopy porosity and fruit exposure influenced microclimate, fungal disease incidence and grape composition. An objective, rapid and non-invasive method to assess and map the canopy status is needed to apply in precision viticulture. A new method for canopy status assessment and mapping based on non-invasive machine vision was applied in commercial vineyards in this work.

Using RGB images and LiDAR data to characterise fruit-to-leaf ratios in grapevine collections

One of the main effects of global warming is an increase in the sugar concentration of grapes at harvest time, resulting in wines with a high alcohol content and an unbalanced structure. The fruit to leaf ratio is a key factor in determining the final sugar concentration, and training systems and management techniques can help to control this parameter.

Exploring the impact of grape pressing on must and wine composition

Pressing has a relevant impact on the characteristics of the must and subsequently on white wines produced [1]. Therefore, the adequate management of pressing can lead to the desired extraction of phenols and other grape compounds (i.e. Organic acids), aromas and their precursors, allowing the production of balanced wines [2]. This aspect is especially important to sparkling wine where the acidity and pH, and the content of phenols affect its longevity and the expected sensory character.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.