IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of dehydration and maceration conditions on VOCs composition and olfactory profile of Moscato Bianco passito sweet wine

Influence of dehydration and maceration conditions on VOCs composition and olfactory profile of Moscato Bianco passito sweet wine

Abstract

Among the Vitis vinifera L. cv. Moscato, Moscato Bianco is the oldest and most cultivated one in Europe (1). According to the OIV Focus 2015, Italy is the country with the largest cultivated area of Moscato Bianco with about 12500 hectares (2), that is used to produce well-known wines (i.e., Moscato Passito in Piedmont, Moscato di Trani in Puglia, and Moscatello di Montalcino in Tuscany), mainly obtained from partially dehydrated grapes (1). Different dehydration techniques can strongly modify the chemical compounds of oenological interest, among which Volatile Organic Compounds (VOCs) (1) that are the main responsible for the varietal sensory character of the final wine.

The aims of the present research were to evaluate the effects of two different dehydration techniques (on vine; post-harvest) on the VOCs composition and odour profile of the corresponding Moscato sweet passito wines. Further, the introduction of a pre-fermentative cryomaceration step was also evaluated.
Moscato Bianco grapes, grown in Puglia (Italy), were used to obtain four wine samples: passito wines from grapes dehydrated on vine (oVD) and in post-harvest on plastic racks (pHD), vinified with skin maceration during the alcoholic fermentation (AF); the same two grapes were vinified with a pre-fermentative cryomaceration phase at 0°C for 4 days (oVD_pM and pHD_pM, respectively). VOCs and sensory profiles of the four wine samples were analysed by LL/GC-MS and descriptive sensory assessment (9 experienced and trained judges, 5 point numerical category scale). 

Results show that the different dehydration and maceration conditions significantly (ANOVA, p<0.05) influenced the volatile composition of the wines, allowing to obtain wines with different olfactory properties. Indeed, higher levels of some important terpenes (i.e., geranic acid, β-linalool, nerol, α-terpineol) as well as more intense floral odours were detected in oVD compared to pHD, showing intense honey and dehydrated fruits notes. This suggest that the on-vine dehydration is more preservative of varietal aromas, preventing the “sensory homologation” towards dehydrated notes. The introduction of the pre-fermentative cryomaceration step mostly affected VOCs related to the AF, namely esters, acids, and alcohols, but the floral character of oVD_pM was preserved. 

VOCs-odour and odour-odour correlations were tested by Person correlation (p<0.05): woody and honey descriptors were correlated (r=1.000) to each other, and to the same VOCs (ethyl vanillate, butyrolactone, furfural, 1-butanol, among others); the fruity character was positively correlated to esters, terpenes, and alcohols; dehydrated apricot and dried fig descriptors resulted strongly correlated (r>0.8) to acetoin.

References

1. Mencarelli & Tonutti (2013), Sweet, Reinforced and Fortified Wines: Grape Biochemistry, Technology and Vinification.
2. OIV (2015). Grapevine varieties’ area by country.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pittari Elisabetta1, Napoletano Michele1, Moio Luigi1, Tarricone Luigi2 and Piombino Paola1

1Department of Agricultural Sciences (DiA), University of Naples Federico II, Italy
2CREA-VE, Council for Agricultural Research and Economics – Research Centre for Viticulture and Enology, Turi (BA), Italy

Contact the author

Keywords

Moscato Bianco, grapes dehydration, pre-fermentative cryomaceration, sweet wines, volatiles

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Prise en compte et mutations de l’acidité volatile au XXe siècle : les évolutions règlementaires, scientifiques et qualitatives d’un composé du vin au regard de l’histoire

Les composés actifs du vin ont, jusqu’ici, peu fait l’objet d’études sur le temps long. Le développement de l’œnologie, de l’analyse des vins et, de manière concomitante, l’essor des règlementations vinicoles au XXe siècle révèlent pourtant au grand jour le poids de ces composés et leurs évolutions. Dans cette communication, nous souhaitons montrer comment l’acidité volatile des vins,

Production and technological characteristics of some French clones of the Chardonnay variety in Yugoslavia

L’observation est effectuée entre 1996 et 1998. L’expérience a commencé avec des clones numérotés: 75, 95, 96 et 227 de la variété Chardonnay. Le porte greffe est le Kober 5 BB. La forme de conduite est le cordon. La taille est longue. La densité de plantation est 3,5 x 1 mètre (2857 ceps par 1/ha).

Identification of riboflavin low producer yeasts to prevent the light-struck taste in white wines

Wine quality maintenance during the storage is a fundamental aspect for both wine producers and consumers. Nowadays, great attention has been given to the light effect

Application de l’Analyse du Cycle de Vie (ACV) à un domaine viticole

Since 1980, Château de l’Éclair has belonged to SICAREX Beaujolais and has been involved in experimentation for the Beaujolais vineyards. However, it is a commercial estate with profitability and quality constraints, which means that it has to meet the growing environmental expectations of consumers. Given the number of practices claimed to be environment-friendly, it is sometimes difficult to prioritize actions.

Simulating climate change impact on viticultural systems in historical and emergent vineyards

Global climate change affects regional climates and hold implications for wine growing regions worldwide. Although winegrowers are constantly adapting to internal and external factors, it seems relevant to develop tools, which will allow them to better define actual and future agro-climatic potentials. Within this context, we develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), provides a generic modeling framework for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability…) as well as production strategies and adaptation rules according to climate change scenarios. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Using this model, we have recently analyzed the evolution of vineyards’ exposure to climatic risks (frost, pathogen risk, heat wave) and the adaptation strategies potentially implemented by the winegrowers. This approach, implemented for two climate change scenarios, has been initiated in France on traditional (Loire Valley) and emerging (Brittany) vineyards. The objective is to identify the time horizons of adaptations and new opportunities in these two regions. Carried out in collaboration with wine growers, this approach aims to better understand the variability of climate change impacts at local scale in the medium and long term.