IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of dehydration and maceration conditions on VOCs composition and olfactory profile of Moscato Bianco passito sweet wine

Influence of dehydration and maceration conditions on VOCs composition and olfactory profile of Moscato Bianco passito sweet wine

Abstract

Among the Vitis vinifera L. cv. Moscato, Moscato Bianco is the oldest and most cultivated one in Europe (1). According to the OIV Focus 2015, Italy is the country with the largest cultivated area of Moscato Bianco with about 12500 hectares (2), that is used to produce well-known wines (i.e., Moscato Passito in Piedmont, Moscato di Trani in Puglia, and Moscatello di Montalcino in Tuscany), mainly obtained from partially dehydrated grapes (1). Different dehydration techniques can strongly modify the chemical compounds of oenological interest, among which Volatile Organic Compounds (VOCs) (1) that are the main responsible for the varietal sensory character of the final wine.

The aims of the present research were to evaluate the effects of two different dehydration techniques (on vine; post-harvest) on the VOCs composition and odour profile of the corresponding Moscato sweet passito wines. Further, the introduction of a pre-fermentative cryomaceration step was also evaluated.
Moscato Bianco grapes, grown in Puglia (Italy), were used to obtain four wine samples: passito wines from grapes dehydrated on vine (oVD) and in post-harvest on plastic racks (pHD), vinified with skin maceration during the alcoholic fermentation (AF); the same two grapes were vinified with a pre-fermentative cryomaceration phase at 0°C for 4 days (oVD_pM and pHD_pM, respectively). VOCs and sensory profiles of the four wine samples were analysed by LL/GC-MS and descriptive sensory assessment (9 experienced and trained judges, 5 point numerical category scale). 

Results show that the different dehydration and maceration conditions significantly (ANOVA, p<0.05) influenced the volatile composition of the wines, allowing to obtain wines with different olfactory properties. Indeed, higher levels of some important terpenes (i.e., geranic acid, β-linalool, nerol, α-terpineol) as well as more intense floral odours were detected in oVD compared to pHD, showing intense honey and dehydrated fruits notes. This suggest that the on-vine dehydration is more preservative of varietal aromas, preventing the “sensory homologation” towards dehydrated notes. The introduction of the pre-fermentative cryomaceration step mostly affected VOCs related to the AF, namely esters, acids, and alcohols, but the floral character of oVD_pM was preserved. 

VOCs-odour and odour-odour correlations were tested by Person correlation (p<0.05): woody and honey descriptors were correlated (r=1.000) to each other, and to the same VOCs (ethyl vanillate, butyrolactone, furfural, 1-butanol, among others); the fruity character was positively correlated to esters, terpenes, and alcohols; dehydrated apricot and dried fig descriptors resulted strongly correlated (r>0.8) to acetoin.

References

1. Mencarelli & Tonutti (2013), Sweet, Reinforced and Fortified Wines: Grape Biochemistry, Technology and Vinification.
2. OIV (2015). Grapevine varieties’ area by country.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pittari Elisabetta1, Napoletano Michele1, Moio Luigi1, Tarricone Luigi2 and Piombino Paola1

1Department of Agricultural Sciences (DiA), University of Naples Federico II, Italy
2CREA-VE, Council for Agricultural Research and Economics – Research Centre for Viticulture and Enology, Turi (BA), Italy

Contact the author

Keywords

Moscato Bianco, grapes dehydration, pre-fermentative cryomaceration, sweet wines, volatiles

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.

Comparative QTL mapping of phenology traits in three cross populations of grapevine

Long-term studies on grapevine phenology have clearly demonstrated that global warming is affecting phenological events, leading to an anticipation in their timing, and negatively impacting grape yield and berry quality. Therefore, dissecting the genetic determinants involved in the plant regulation of the phenological stages of budburst, flowering, veraison and ripening can improve our knowledge of the underlying mechanisms and support plant breeding programs and the advancement of vineyard management strategies.
We report here the results of a QTL mapping experiment conducted on three segregating populations obtained from the crossing of ‘Cabernet Sauvignon’ and ‘Corvina’, ‘Corvina’ and the hybrid ‘Solaris’ and ‘Rhine Riesling’ and ‘Cabernet Sauvignon’.

How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

The aim of this study is to evaluate the role of pH on both the acetaldehyde chemistry and wine phenolics evolution over the aging period. In addition, the effect of both an early and late acidification was evaluated

SSR analysis of some Vitis sylvestris (GMEL.) accessions of the Szigetköz and Fertő-hanság national park, Hungary

The evolution of cultivated plants played important role in the ascent of humanity. Research of their origin and evolution started at the beginning of the20th century, but till nowadays a lot of questions remain open. A large number of theories exist about the evolution of the European grapevine (Vitis vinifera L.). The Vitis sylvestris GMEL. in Hungary is a protected species.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.