terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Abstract

Context and purpose of the study – Root architecture (RSA), the spatial-temporal arrangement of a root system in soil, is essential for edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The aims of this study were (i) to determine the phenotypic differences in traits related to root distribution and morphology along the substrate profile in different Vitis rootstocks during early growth, (ii) to assess the plasticity of these traits to soil water deficit and (iii) to quantify their relationships with plant water uptake.

Material and methods – Vitis vinifera cv Riesling were grafted on three rootstocks genotypes : 140Ru and 110R considered as tolerant to water stress and RGM as sensitive. Plants were grown in a glasshouse for 4 weeks either in rhizotrons and in transparent tubes (40cm height) and submitted to two substrate water regimes (WW, irrigation to 90% of field capacity; WD, no irrigation until reaching 50% of field capacity). In the tube experiment, the amount of transpired water was measured gravimetrically three times a week. In both trials, RSA traits were analyzed by 2D digital imaging using SmartRoot and RhizoVision software.

Results – Root phenotyping after 30 days revealed similar total root biomass between RGM and 140Ru greater than 110R, but there are substantial variations in RSA morphological traits between rootstocks.The drought-sensitive RGM was characterized by shallow root system development, with more primary roots and a larger proportion of laterals roots in the upper half of the rhizotrons or tubes. In contrast, the drought-tolerant rootstocks 140Ru and 110R were characterized by fewer, more plunging roots and showed proportionately a higher root length density in the deep layer. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for all three rootstocks ; suggesting vertical distribution of roots was more influenced by genotype than plasticity to the soil water regime, at least in our experimental conditions. The deeper root system of 140Ru compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on aboveground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

DOI:

Publication date: July 5, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Mathieu LARREY1*, Louis BLOIS1,2, Jean-Pascal TANDONNET1, Clément SAINT CAST1, Marina DE MIGUEL VEGA1, Elisa MARGUERIT1 and Philippe VIVIN1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2Department of Viticulture, Hochschule Geisenheim University, Germany

Contact the author*

Keywords

root system architecture, root traits, water uptake, drought tolerance, genotypic diversity, rootstock, grapevine

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Grape and wine quality of terraced local variety Pinela (Vitis vinifera L.) under different water management

Climate change is driving global temperatures up together with a reduction of rainfall, posing a risk to grape yields, wine quality, and threatening the historical viticulture areas of Europe.

Synthesis of scientific research on the application of mechanized grapevine pruning in the Republic of Moldova

One of the basic problems in the viticulture branch is the improvement of perspective technologies for both vine training systems: with vertical standing and with free position of shoots, adapted to the requirements of complex mechanization.

French regulations related to vineyard spraying and examples of devices developed in France and around the world to limit the risks of point-source pollution

Managing pests in vineyards presents a major challenge for winegrowers, who are seeking effective solutions to control diseases and pests.

Analyzing firms’ dynamic capabilities to identify the actions for a sustainable future of the Italian wine sector

The UN Agenda 2030 for Sustainable Development, a global plan for a better future, requires actions.

The evolution of wine tourism: trends, challenges and opportunities for the future

The wine tourism industry has experienced significant transformation over the past years, accelerated by the COVID-19 pandemic.