GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of viticulture on the temporary evolution of the landscape: the case of the AO Ribera del Duero (Central Spain)

Influence of viticulture on the temporary evolution of the landscape: the case of the AO Ribera del Duero (Central Spain)

Abstract

Introduction: The European Landscape Convention (ELC, 2001) defined the landscape as the “part of a territory as perceived by the population and resulting from the action of natural and/or human factors and their interrelationships”. Wine landscapes, protected or not under figures such as cultural landscapes or Cultural heritage, are a clear demonstration of this definition, denoting the interrelationships of the natural environment and the action of the human, which modulates the territory to give the different wine landscapes. This work was focused on the study of the effect of the human factors linked to the cultivation of the vine on the modification of the landscape.

Methods: Landscape images before and after the implantation of different vineyards, so as after the abandonment of some vineyard cultivation were studied to evaluate changes of landscapes from ecological and sustainable points of view. Furthermore, economical aspects were also considered. 

Integral program and objective: This study is a component of a general program of terroir analysis conducted in Spain and that expanding over 5.5 million hectares and includes 370,000 ha of vineyards, using analysis scale of 1:50.000 or 1:25.000, depending on the region (Integral Viticultural Zoning, Gómez-Miguel & Sotés 1992-2018). This work is focused on the special case of AO Ribera del Duero, which landscape has evolved intensively in the last decades. So, the main aim was the analysis of the effect of the temporary evolution (1952/2017) of the vineyard extension in the DO Ribera del Duero territory on its landscape, and its repercussion on the sustainable value of this territory.

Results: The study pointed out both positive and negative effect of the human factor on the landscape due to the vine cultivation. Consolidate viticulture landscape demands continue human action to prevent landscape deterioration, and new plantation obviously modifies the natural landscape, however the changes can also have positive effects, as for example ecological ones when erosion is reduced, or social and economic ones, when new attractive landscapes are created, and they will be used as an enotourism attraction.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

María L. GONZÁLEZ-SANJOSÉ1*, Vicente D. GÓMEZ-MIGUEL2

1 Dpto of Biotechnology and Food, Science, Burgos University, Plaza Misael Bañuelos s/n, 09001 Burgos
2 Universidad Politécnica de Madrid; c/ Puerta de Hierro, 2; 28040-Madrid, Spain

Contact the author

Keywords

viticulture, zoning, landscape, sustainability, enoturism, remote sensing

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

Drip irrigation and precision cooling reduce impact of extreme heat events during berry ripening

Context and purpose of the study. Heatwaves have become more frequent and intense in several winegrowing regions.

Grapevine, berry and soil Indicators to manage minimal irrigation strategy in semi-arid conditions: example of Grenache noir (Vitis vinifera L.)

Context and purpose of the study. Climate change in many Mediterranean wine-growing regions is resulting in lower rainfall and higher reference evapotranspiration, generally leading to reduced water availability for vines.

Barrel-to-Barrel Variation of Color and Phenolic Composition in Barrel-Aged Red Wine

Tangible variation of sensory characteristics is often perceived in wine aged in similar barrels. This variation is mostly explained by differences in the wood chemical composition, and in the production of the barrels. Despite these facts, the literature concerning barrel-to-barrel variation and its effect on wine sensory and chemical characteristics is very scarce [1]. In this study, the barrel-to-barrel variation in barrel-aged wines was examined in respect of the most important phenolic compounds of oenological interest and chromatic characteristics, considering both the effects of the (individual) barrel and cooperage. A red wine was aged in 49 new medium-toasted oak (Quercus petraea) barrels, from four cooperages, for 12 months

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.