OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Mitigating the effects of climate change on berry composition by canopy management

Mitigating the effects of climate change on berry composition by canopy management

Abstract

Primary and secondary metabolites are major components of grape composition and their balances define wine typicality. Global climate change is modifying vine physiology and especially the composition of grape berries at harvest, by decoupling phenolic and aromatic maturities (depending on secondary metabolites) from technical maturity (depending on primary metabolites). These modifications can be limited through vineyard management. One of the rapid and efficient ways to mitigate the effects of climate change is to modify vine canopy, thus modifying the relationships between source and sink. 

To face this challenge, we used Vitis vinifera cv. Cabernet Sauvignon plants 1) to analyse the response of yield and biochemical composition in ripening berries, including sugars, organic acids, amino acids, phenolic compounds (anthocyanins, flavonols) and aroma molecular makers including methoxypyrazines associated with the green character (low ripenning), volatile thiols (and their precursors), as well as furanones and lactones linked with the cooked/dried fruit aromas (overipenning), with UHPLC, GC-MS and LC-MS analyses; 2) to link the changes in berry composition with wine quality by microvinification sensory analysis; 3) to study the response of berry transcriptome to canopy manipulation, by RNAseq or qPCR analyses. 

 The results showed that metabolites had different sensitivities to the modulation of leaf-to-fruit ratios, demonstrating that it is possible to determine an optimal leaf/fruit ratio to reduce sugar concentration in the berry without much impact on the typicality of Bordeaux wines

Acknowledgments

We thank the CIVB for financial support to the CANOGRAPE project N ° 44233 and France AgriMer for financial support to CANABA project N°414

DOI:

Publication date: June 9, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Sabine Guillaumie (1), Eloïse Brouard (1), Lina Wang (1), Ghislaine Hilbert (1), Cécile Thibon (2), Isabelle Merlin (1), Alexandre Pons (2,3), Christel Renaud (1), Claudine Trossat-Magnin (1), Nathalie Ollat (1), Serge Delrot (1), Philippe Darriet (2), Eric Gomès (a), Zhanwu Dai (1), Sabine Guillaumie (1)

(1) UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, Villenave d’Ornon, France
(2) Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France
(3) SEGUIN MOREAU France, Cognac, France

Contact the author

Keywords

climate change, leaf/fruit ratio, berry composition, wine

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Red Grenache variety in Rhône Valley : impact of “terroir” and vintages on the aromatic potential of the grapes

The Grenache Noir grape variety, due to its originality and its representativeness, contributes very directly to the quality and typicality of the wines of the Rhône Valley. It is generally appreciated for its varied aromatic palette and for the roundness and suppleness it gives to wines. Since 1995, the Rhodanien Institute has set up a network of reference plots representative of the different types of terroir present in the southern zone of the Côtes du Rhône Appellation (TRUC, 1997; VAUDOUR et al, 1996 ) . Publications on the aromatic composition of grapes and wines are very abundant, but only a few articles have appeared on the Grenache grape variety PAUMES et al., 1986).

Optimization of in vitro establishment of grapevine varieties for fast micropropagation 

Micropropagation is an important alternative to conventional methods of plant propagation. The objective of this study was to optimize a protocol for in vitro micropropagation of selected grapevine hybrids (H19 and H20) that are included in our breeding program. For the sprouting initiation experiment, nodal cuttings with only one axillary bud from two hybrids were separated, disinfected, and cultivated in 50% Murashige Skoog nutrient medium (½ MS) and Woody Plant Medium (WPM), adding 4.4 µM benzyladenine (BA) in both mediums.

On-the-go resistivity sensors employment to support soil survey for precision viticulture

There is an increasing need in agriculture to adopt site-specific management (precision farming) because of economic and environmental pressures. Geophysical on-the-go sensors, such as the ARP (Automatic Resistivity Profiling) system, can effectively support soil survey by optimizing sampling density according to the spatial variability of apparent electrical resistivity (ER).

Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Soil Electrical Resistivity measurement is a zoning tool used by soil scientists and agronomists in viticulture. Indeed, the measure enables to optimize pedological surveys

Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

(+)-Catechin—laccase oxidation dimeric standards were hemi-synthesized using laccase from Trametes versicolor in a water-ethanol solution at pH 3.6.