GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

Abstract

Context and purpose of the study – The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world. There is a need to assess different wine grape varieties under the same growing conditions to enable conclusions on the differences in their response to drought and facilitate variety-specific irrigation management.

Material and methods – The vineyard was located in the ROZA irrigation district in the Yakima valley, Washington. Varieties were grown side by side and replicated 8 times. Spacing was 1.8 m x 2.7 m in a North-South orientation. The vines were on their own-roots, double-trunked, trained to a bi-lateral cordon. 12-18 varieties of wine grape grown were studied for this experiment. Access tubes were installed for soil moisture measurements using a neutron probe, and irrigation was independently controlled for each row. Dry-down cycles were applied pre- and post-veraison from 2016 to 2018. On the same day, predawn (Ψpd) and midday leaf water potential (Ψmd) were measured with a pressure chamber, stomatal conductance (gs) was measured with a porometer at midday and on the same leaf in 2016 and 2017 and with an infrared gas analyzer in 2018. Soil moisture measurements were taken on the same day for each vine.

Results – The results show that there may be three distinctive major patterns of midday leaf water potential response to soil water availability: Linear drop across the entire soil moisture range such as for Cabernet franc and Semillon, linear drop below a threshold of soil moisture such as for Gewurztraminer and Grenache, and an insensitive to soil moisture such as for Lemberger and Riesling. Meanwhile, the stomatal sensitivity did not always mirror the Ψmd behavior; for example some varieties like Cabernet franc show a linear drop of Ψmid while having a tight stomatal control during soil drought (r=0.76) while other varieties like Riesling have an insensitive response of Ψmid (r=0.33) without necessarily having sensitive stomata (r=0.56). Finally, the slope of the linear Ψmd:Ψpd, studied as an the indicator of the internal regulation of water status, varied between 0.4 for Grenache and 1 for Semillon. This shows that for our vineyard, transpiration sensitivity was always higher than hydraulic sensitivity. Since intense yellowing of leaves has been recorded in varieties like Cabernet franc, Muscat blanc and Malbec, these results direct us to inspect if the sensitivity of gs in those varieties is leading to carbon starvation during drought. These results may eventually be used by growers to devise variety-specific irrigation management strategies.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Joelle MARTINEZ*, Markus KELLER

Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA

Contact the author

Keywords

wine grape, Isohydric, Anisohydric, stomatal regulation, water potential, hydraulic regulation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking.
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines.

From precursor identification to the study of the distribution of 3-methyl-2,4-nonanedione in red wines and spirits

Prematurely aged red wines are marked by intense prune and fig aromatic nuances that dominate the complex bouquet that can be achieved through bottle aging.

Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

La région viticole de San Juan (Argentine) est marquée par des températures très élevées et des variations diurnes faibles. La valorisation de la connaissance de cet environnement et de ses interactions avec le fonctionnement de la vigne et le lien au vin passent par l’étude de ses terroirs et de leur caractérisation. Le point de départ de ce travail est l’étude des zones mésoclimatiques aptes à la culture de la vigne de la Province de San Juan et à la caractérisation des sols de cette même région. L’objectif est de définir le potentiel vitivinicole des zones considérées.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.