OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

Abstract

During wine alcoholic fermentation, yeasts produce volatile aroma compounds from sugar and nitrogen metabolism. Some of the metabolic pathways leading to these compounds have been known for more than a century. Yet, the differences in compound yield and nature between species remain poorly understood. Using a two-pronged approach of isotopic filiation and transcriptome analysis, this study endeavoured to shed new light on the utilisation of nitrogen sources by two wine-related yeast species, Saccharomyces cerevisiae Lalvin EC1118® (Lallemand) and Kluyveromyces marxianus IWBT Y885. 

The data showed that, although the order and intensity of uptake of nitrogen sources was broadly similar, those of ammonium and arginine differed. Furthermore, the utilisation of assimilated amino acids also differed significantly. While S. cerevisiae redistributed the nitrogen in these amino acids evenly for the production of other amino acids, K. marxianus clearly favoured specific amino acids. As for amino acids used as substrates for the production of aroma compounds, the fate of leucine and valine did not differ significantly between the two species. However, phenylalanine metabolism differed, and a larger proportion of phenylalanine was channelled through the Ehrlich pathway in K. marxianus, resulting in increased production of phenylethanol. Transcriptome data suggest that this shift can be explained by the higher expression of aromatic amino transferases in K. marxianus. Taken together, the data show that metabolic pathways are broadly conserved, but that individual nitrogen sources are not always assimilated and metabolised in identical ways. The study also provides new insights on the modulation of fermentative aroma profiles by yeast species of commercial interest.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Benoit Divol, Stephanie Rollero, Audrey Bloem, Anne Ortiz-Julien, Florian Bauer, Carole Camarasa

Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

Nitrogen metabolism, Kluyveromyces marxianus, Saccharomyces cerevisiae, Fermentative aroma compounds 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Basic Terroir Unit (U.T.B.) and quality control label for honey; making the designations of origin (A.O.C) and« crus » more coherent

Considérant d’une part la judicieuse mise au point d’un label de qualité contrôlée des miels suisses (STÖCKLI et al. 1997), considérant d’autre part l’élaboration d’une carte des paysages végétaux (HEGG et al. 1993),

Study of grape physiology and wine quality (cv. Merlot) in different identified terroirs of the canton Ticino (Switzerland)

Une étude de la physiologie de la vigne (cv. Merlot) et de la qualité des vins a été réalisée au Tessin de 2006 à 2008. La méthodologie utilisée pour cette étude intégrait tous les paramètres qui définissent les terroirs: facteurs naturels (géologie, pédologie et climat), facteurs physiologiques de la vigne et qualité des vins qui sont les révélateurs de la valeur d’un terroir.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.

Harvest dates, climate, and viticultural region zoning in Greece

Climate is clearly one of the most important factors in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality, and ultimately driving economic sustainability. Today many assessments of a region’s climate comes from a combination of station and spatial climate data analyses that facilitate the evaluation of the general suitability for viticulture and potential wine styles, allows for comparisons between wine regions, and offers growers a measure of assessing appropriate cultivars and sites.