GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

Abstract

Context and purpose of the study– The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.
Material and methods – The experiment was performed in 91 experimental units located at four different locations across the State, planted to three different table and wine grape cultivars (Crimson Seedless, Cabernet Sauvignon, Merlot) whose hydric behavior ranged from isohydric to anisohydric, and in between. Leaf gas-exchanges and stem water potentials (Ψ) were measured routinely in each experimental unit, and the δ13C at harvest. At one of the locations, δ13C and water potentials were measured on an equi-distant grid, spatialized and clustered to compare their efficiency in the differentiated the vineyard block into two distinct zones having grapes with different flavonoid composition.
Results – A significant and direct relationship was evident between δ13C and average stem water potential (R2 = 0.72), stomatal conductance (R2 = 0.66) and net carbon assimilation (R2 = 0.62) measured throughout the season. Differences between the cultivars were small, independently from their reported hydric behavior and it was possible to pool all of them together. This was also true in crossed relationships between stem water potential, stomatal conductance, and net carbon assimilation that were not able to clearly discriminate between the reported hydric behaviors. A unique state-wide calibration was therefore developed between δ13C and plant water status. Simulation exercise demonstrated that variability in slope and R2 of the δ13C ~ Ψ regression can be caused by comparison of discrete measurements (Ψ) of water status to a continuous measurement (δ13C), and that apparent variability decreased with increasing sampling points of the discrete measurement (Ψ).The use of δ13C was then tested in a precision viticulture context. The management zones obtained by δ13C and stem water potentials were similar at 72% and allowed to separate the harvest in two pools, having statistically different grape composition (soluble solids, organic acids and anthocyanin profiles). Our results provided evidence that δ13C discrimination was a reliable and repeatable assessor of plant water status in vineyard ecosystems useful for delineation of management zones in precision viticulture.

DOI:

Publication date: September 18, 2023

Issue: GIESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, Runze YU2, Johann MARTINEZ-LUSCHER2, S. Kaan KURTURAL2

1 Dep. of Viticulture and Enology, California State University, Fresno, CA 93740. USA

2 Department of Viticulture and Enology, University of California, Davis, CA 95616, USA

Keywords

grapevine, δ13C, carbon stable isotopes, water status, leaf gas-exchange, precision agriculture, selective harvest

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of maceration conditions during the winemaking of withered Corvina grapes on wine polyphenols and anthocyanins

Amarone is an Italian red wine with worldwide recognition and high added value. In Amarone wines, grapes undergo a withering process before vinification; this leads to a modification in the concentrations of sugars, acids, and secondary metabolites.

Drip irrigation and precision cooling reduce impact of extreme heat events during berry ripening

Context and purpose of the study. Heatwaves have become more frequent and intense in several winegrowing regions.

Influence of precipitation on the phenolic and isotopic composition of Vitis Vinifera red wines

This study investigates how precipitation from November to February during each harvest year, influence the phenolic and isotopic profiles of red wines, particularly focusing on trans-resveratrol, total phenolic compounds, and carbon and oxygen isotopes (¹³C/¹²C and ¹⁸O/¹⁶O).

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.