GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

Abstract

Context and purpose of the study – One of the reasons of the spread of grapevine virus diseases in vineyards around the world is the lack of knowledge by the main actors of the wine sector. To face this problem, five partners worked together to develop the PAThOGEN project, a training program aimed to improve grapevine virus knowledge and management. The partnership gathers one French technical center (IFV), one Spanish university (USC), one Italian applied research center (CREA), one Spanish foundation specialized in training and technology transfer (FEUGA) and one Italian SME specialized in the development of informatics tools and in knowledge transfer (HORTA).The objectives of PAThOGEN are: (i) to develop and maintain a high-quality work-based Vocational and Education Training program, (ii) to improve the skills of professionals of the wine sector.

Material and methods – The PAThOGEN training is the result of a project co-funded by the Erasmus+ Program of the European Union (2015-1FR1-KA202-015329). The e-learning training was developed in two levels (BASIC and ADVANCED) and four languages (English, French, Spanish and Italian); the training is completed with two practical sessions in the field, one in spring and one in autumn. The contents and platform were evaluated by the partners, an external evaluator and an advisory board of wine technicians from the 3 partner countries to ensure that the content proposed for the courses corresponded to the needs of the professionals of the sector. Once this step was validated, the pilot courses were available online, and groups of “student-testers” were selected in the 3 countries from different professional categories (technicians, winegrowers, nurserymen, students, teachers, phytosanitary official services…). Throughout the process of developing the courses, the advisors and students assessment has been essential to getting a demand-driven training.

Results – In the 3 countries, 128 people have tested the online courses. A very large majority (98%) considered the PATHOGEN program as an “interesting” or “very interesting” training course. The field sessions were crucial to finalize the training and were well appreciated by students because they allowed them to identify the symptoms of virus diseases in vivo (94% of the students had a “very good impression” concerning the field session). The detailed evaluations allowed us to rework the courses both in terms of content (simplification, clarity of information…) and functionality of the platform (speed of animations, quality of audio, sharpness of photos…). We have therefore improved the 8 versions of the courses (4 languages, 2 levels) taking these remarks into account and they are currently available at www.pathogenproject.eu

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Julián GARCÍA-BERRIOS1, Elisa ANGELINI2, Cristina CABALEIRO1, Anne-Sophie SPILMONT3, Daniel DURÁN4, Tiziano BETTATI5

1 USC, EPS de Ingeniería, 27002 Lugo (SP)
2 CREA, Viale XXVIII Aprile 26 – 31015, Conegliano, Treviso (IT)
3 IFV Domaine de l’Espiguette – 30240, Le Grau Du Roi (FR)
4 FEUGA Rúa Lope Gómez de Marzoa s/n – 15705 Santiago de Compostela (SP)
5 HORTA S.r.l. Via Egidio Gorra 55 – 29122, Piacenza (IT)

Contact the author

Keywords

grapevine, virus, e-learning, field training

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes

In this video recording of the IVES science meeting 2024, Silvia Motta (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, Asti, Italy) speaks about the effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes. This presentation is based on an original article accessible for free on OENO One.

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia.

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature
especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and
iii) identifying the impact of temperature on grape berry attributes.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).