GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

Abstract

Context and purpose of the study – One of the reasons of the spread of grapevine virus diseases in vineyards around the world is the lack of knowledge by the main actors of the wine sector. To face this problem, five partners worked together to develop the PAThOGEN project, a training program aimed to improve grapevine virus knowledge and management. The partnership gathers one French technical center (IFV), one Spanish university (USC), one Italian applied research center (CREA), one Spanish foundation specialized in training and technology transfer (FEUGA) and one Italian SME specialized in the development of informatics tools and in knowledge transfer (HORTA).The objectives of PAThOGEN are: (i) to develop and maintain a high-quality work-based Vocational and Education Training program, (ii) to improve the skills of professionals of the wine sector.

Material and methods – The PAThOGEN training is the result of a project co-funded by the Erasmus+ Program of the European Union (2015-1FR1-KA202-015329). The e-learning training was developed in two levels (BASIC and ADVANCED) and four languages (English, French, Spanish and Italian); the training is completed with two practical sessions in the field, one in spring and one in autumn. The contents and platform were evaluated by the partners, an external evaluator and an advisory board of wine technicians from the 3 partner countries to ensure that the content proposed for the courses corresponded to the needs of the professionals of the sector. Once this step was validated, the pilot courses were available online, and groups of “student-testers” were selected in the 3 countries from different professional categories (technicians, winegrowers, nurserymen, students, teachers, phytosanitary official services…). Throughout the process of developing the courses, the advisors and students assessment has been essential to getting a demand-driven training.

Results – In the 3 countries, 128 people have tested the online courses. A very large majority (98%) considered the PATHOGEN program as an “interesting” or “very interesting” training course. The field sessions were crucial to finalize the training and were well appreciated by students because they allowed them to identify the symptoms of virus diseases in vivo (94% of the students had a “very good impression” concerning the field session). The detailed evaluations allowed us to rework the courses both in terms of content (simplification, clarity of information…) and functionality of the platform (speed of animations, quality of audio, sharpness of photos…). We have therefore improved the 8 versions of the courses (4 languages, 2 levels) taking these remarks into account and they are currently available at www.pathogenproject.eu

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Julián GARCÍA-BERRIOS1, Elisa ANGELINI2, Cristina CABALEIRO1, Anne-Sophie SPILMONT3, Daniel DURÁN4, Tiziano BETTATI5

1 USC, EPS de Ingeniería, 27002 Lugo (SP)
2 CREA, Viale XXVIII Aprile 26 – 31015, Conegliano, Treviso (IT)
3 IFV Domaine de l’Espiguette – 30240, Le Grau Du Roi (FR)
4 FEUGA Rúa Lope Gómez de Marzoa s/n – 15705 Santiago de Compostela (SP)
5 HORTA S.r.l. Via Egidio Gorra 55 – 29122, Piacenza (IT)

Contact the author

Keywords

grapevine, virus, e-learning, field training

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Management of grapevine water status with the DSS Vintel® provides evidence of sustainable irrigation strategies while maintaining wine quality of Pinot gris in Friuli-Venezia Giulia region, NE italy

Deficit irrigation strategies can be valuable means to improve grape quality while saving important amounts of water. A simple way to use deficit irrigation can be based on irrigating a vineyard with a determined level of crop evapotranspiration. Using a precise physiological parameter indicating water status, irrigation could be managed to maintain a specific pre-dawn leaf water potential.

An overview of the impact of clone, environmental factors and viticultural techniques on rotundone concentration in red wines

Rotundone is the main aroma compound responsible for peppery notes in red wine. This positive and very potent molecule has an odor threshold of 8 ng/L in water and 16 ng/L in red wine. It has been detected in several grape varieties with some of the highest concentrations recorded in Syrah, Duras, Tardif and Noiret, an interspecific hybrid grown in the North-East of the USA. If several winemaking practices have been identified to lower rotundone in wine, up to date, no enological solution has proved its efficiency to maximize it. This means that efforts to produce high rotundone wines must be undertaken in vineyards. This work provides practical ways that can be used by winegrowers to modulate rotundone levels in their wines.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).