terclim by ICS banner
IVES 9 IVES Conference Series 9 REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Abstract

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses che-mical fingerprints, which require advanced tools such as high-resolution mass spectrometry and mul-tidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

Here, we employ state-of-the-art machine learning methods to optimize the analysis of 1-D GC/MS chromatograms. Specifically, we aim to determine whether these chromatograms contain valuable in-formation beyond the manually extracted peaks typically utilized in the targeted approach.

To explore those questions, we analyzed 4 different types of 1-D raw chromatograms (3 SIM and 1 full-scan) of 80 wines (12 vintages from 7 estates of the Bordeaux area. We first applied nonlinear dimensio-nality reduction techniques (T-SNE and UMAP) to the chromatograms to obtain 2D maps. In the resul-ting maps, wines of the same estates across multiple vintages tended to form clear clusters, whose spatial distribution reflected the geography of the Bordeaux wine region. This indicated that, for this particular set of wine, the raw chromatograms are highly informative about terroir and wine identity.

Next, we applied cross-validated classifiers to the raw chromatograms and found that we could recover perfectly well estates identity independent of vintage. By contrast, performance on vintage classifica-tion was much lower with a maximum performance of 50% correct.

Crucially, we found that the entire chromatogram is informative with respect to both of these variables. Thus, the extraction of specific peaks of the chromatogram to quantify the concentration of 32 known chemical compounds–discarding the rest of the chromatograms–led to worse classification perfor-mance, suggesting that estate identity is distributed over a large chemical spectrum, including many molecules that have yet to be identified.

In addition, the GC raw data can be used to predict the ratings of a professional wine critic (Robert Par-ker) above chance, thus suggesting that GC might also contain information about the organoleptic pro-perties of wine.

Overall, this study demonstrates the strong potential of raw chromatogram analysis for wine characte-rization and identification.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Michael Schartner¹, Jeff M. Beck², Justine Laboyrie³, Laurent Riquier³, Stephanie Marchand3*, Alexandre Pouget4*

1. Center for the Unknown. Champalimaud Institute. Lisbon. Portugal. 
2. Duke university. USA
3. Université de Bordeaux, ISVV, INRAE, UMR 1366 OENOLOGIE, 33140 Villenave d’Ornon, France
4. Département des neurosciences fondamentales. Université de Genève. Suisse. 

Contact the author*

Keywords

Machine learning, Wine composition, Sensorial classification, Terroir

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.